

The ISB Cancer Genomics Cloud

Welcome to the ISB-CGC Documentation on Read the Docs.

Here you will find information describing the features of the ISB-CGC platform,
tips on how to use it, and details about the data that we are hosting on the
Google Cloud Platform.

[image: _images/new-block-three-p.png]
The ISB-CGC aims to serve the needs of a broad range of cancer researchers ranging from
scientists or clinicians who prefer to use an interactive web-based application to access
and explore the rich TCGA dataset, to computational scientists who want to write their own
custom scripts using languages such as R or Python, accessing the data through APIs, and
to algorithm developers who wish to spin up thousands of virtual machines to analyze hundreds
of terabytes of sequence data.

This documentation is a work-in-progress, please let us know how we can improve
it. feedback@isb-cgc.org

– the ISB-CGC team

Contents

	About the ISB-CGC

	Cloud-Hosted Data Sets

	ISB-CGC Web Interface

	Quick Links

	DIY Workshop

	Programmatic Access

	Frequently Asked Questions (FAQ)

	Support & Other Useful Links

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

About the ISB-CGC

The ISB-CGC provides interactive and programmatic access to the TCGA data,
leveraging many aspects of the Google Cloud Platform including BigQuery,
Compute Engine, App Engine, Cloud Datalab and Google Genomics.
Open-access clinical and biospecimen information for all TCGA patients
and samples, combined with the Level-3 TCGA data and genomic reference and
platform-annotation sources are stored in BigQuery, enabling fast SQL-like
queries against the entire dataset. Controlled-access DNA and RNA
sequence data is available to dbGaP-authorized users in the original BAM
and FASTQ file formats.

The ISB-CGC aims to serve the needs of a broad range of cancer researchers
ranging from scientists or clinicians who prefer to use an interactive
web-based application to access and explore the rich TCGA dataset, to
computational scientists who want to write their own custom scripts using
languages such as R or Python, accessing the data through APIs, to algorithm
developers who want to spin up thousands of virtual machines to rapidly
analyze hundreds of terabytes of sequence data. The ISB-CGC allows scientists
to interactively define and compare cohorts, examine the underlying molecular
data for specific genes or pathways of interest, and share insights with
collaborators around the globe.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Cloud-Hosted Data Sets

The ISB-CGC platform hosts the majority of the TCGA data set as well as other reference
and annotation datasets in different appropriate Google Cloud technologies:

	low-level DNA- and RNA-Seq data are stored primarily in Google Cloud Storage [https://cloud.google.com/storage/];

	some open-access CCLE sequence data is also available in Google Genomics [https://cloud.google.com/genomics/], where it can be queried using the GA4GH API [https://media.readthedocs.org/pdf/ga4gh-schemas/latest/ga4gh-schemas.pdf];

	high-level clinical, biospecimen, and molecular data are available in a series of carefully curated datasets and tables backed by the massively-parallel analytics engine Google BigQuery [https://cloud.google.com/bigquery/];

	TCGA radiology and tissue image data are now also available in Google Cloud Storage;

	TCGA proteomics (CPTAC PhaseII) data has also been uploaded to Google Cloud Storage;

The original mission of the ISB-CGC was to host the TCGA dataset. We are now in midst
of adding data from the TARGET pediatric cancer. Stay tuned for updates.

	NCI Cancer Programs
	TCGA Overview

	TARGET Overview

	CCLE Overview

	CGCI Overview

	NCI-GDC Overview

	ISB-CGC Hosted Data Sets
	Data in BigQuery

	Data in Cloud Storage

	Data in Google Genomics

	Reference Data
	ISB-CGC Hosted Reference Data

	Other Reference Data Sources

	Data Releases and Future Plans
	Release Notes

	Future Plans

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

NCI Cancer Programs

In recent years, the
National Cancer Institute [https://www.cancer.gov/about-nci],
in collaboration with other institutes within
NIH [https://www.nih.gov/],
has invested in the production and analysis of several large datasets.
The ISB-CGC platform is funded by NCI in an effort to make these
data more accessible and usable.

The initial goal of the ISB-CGC [http://www.isb-cgc.org] was
to host the data produced by The Cancer Genome Atlas [https://cancergenome.nih.gov/abouttcga] program.
We are now expanding to host data from TARGET [https://ocg.cancer.gov/programs/target]
(a pediatric cancer program), and will in
the future host data from newer projects supported by the
Cancer Genome Characterization Initiative [https://ocg.cancer.gov/programs/cgci].

Please see the individual sections below for more information about
these individual, large-scale programs.

	TCGA Overview

	TARGET Overview

	CCLE Overview

	CGCI Overview

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

TCGA Overview

The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to
accelerate the understanding of the molecular basis of cancer through the
application of genome analysis technologies, including large-scale
genome sequencing.

The overarching goal of TCGA is to improve our ability to diagnose,
treat and prevent cancer. To achieve this goal in a scientifically rigorous
manner, the National Cancer Institute (NCI) and the National Human Genome
Research Institute (NHGRI) used a phased-in strategy to launch TCGA.
A pilot project developed and tested the research framework needed to
systematically explore the entire spectrum of genomic changes involved
in more than 20 types of human cancer.

This massive effort was launched in 2006.
The final samples were shipped in mid-2014,
and analysis of the data produced by this program continues to this day.

For more information please visit the official
TCGA website [https://cancergenome.nih.gov/].

	About the TCGA Data

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

About the TCGA Data

The ISB-CGC hosts approximately 1 petabyte of TCGA [http://cancergenome.nih.gov/] data in Google Cloud
Storage (GCS [https://cloud.google.com/storage/]) and in BigQuery [https://cloud.google.com/bigquery/].

The ISB-CGC platform is one of NCI’s
Cancer Genomics Cloud Pilots [https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/nci-cloud-initiative]
and our mission is to host the TCGA data in the cloud so that researchers around the world
may work with the data without needing
to download and store the data at their own local institutions.

The vast majority (over 99%) of this petabyte of data consists of low-level sequence data,
currently stored as files in Google Cloud Storage (see figure below). Over the course of the TCGA project,
this low-level (“Level 1”) data has been processed through a set of standardized pipelines and
the the resulting high-level (“Level 3”) data is frequently the data that is used
in most downstream analyses. The ISB-CGC platform aims to make these different types of data
accessible to the widest possible variety of users within the cancer research community,
using the most appropriate Google Cloud Platform technologies.

[image: ../../_images/TCGASizeandComplexity.PNG]
More details about the TCGA data-generating platforms, data-types, and levels and can be found in the sections below:

	Understanding the TCGA Data Platforms

	Understanding the TCGA Data Types

	Understanding the TCGA Data Levels

In addition, we recommend that you review important information about data security and data access
in these sections:

	Understanding Data Security

	Understanding Data Access

Historically, the data being hosted by the ISB-CGC was obtained from two former TCGA data
repositories:

	TCGA DCC: the TCGA Data Coordinating Center which provided a Data Portal [https://tcga-data.nci.nih.gov/docs/publications/tcga/] from which users could download open-access or controlled-access data. This portal provided access to all TCGA data except for the low-level sequence data.

	CGHub: the Cancer Genomics Hub [https://cghub.ucsc.edu] was NCI’s current secure data repository for all TCGA BAM and FASTQ sequence data files.

As of June 2016, the official data repository for all TCGA and other NCI CCG data is
the NCI Genomic Data Commons [https://gdc.cancer.gov/]. The original TCGA data,
aligned to the hg19 human reference genome is available from the NCI-GDC’s
legacy archive [https://gdc-portal.nci.nih.gov/legacy-archive/search/f]
while the new “harmonized” data, realigned to hg38 is available from
the NCI-GDC’s main data portal [https://gdc-portal.nci.nih.gov/].

For more information about the original data source repository and data access classes (open vs controlled),
please refer to these sections:

	TCGA Data by Access Class

	TCGA Data by Source Repository

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Understanding the TCGA Data Platforms

When working with any of the data types, it is important to also be aware of both the platform that was used to generate the underlying raw data as well as the
pipeline that was used to process the data. For example, over the course of the TCGA study, DNA methlyation data was obtained using first the Illumina
HumanMethylation27 platform, and later using the HumanMethylation450 platform. Any analysis that combines data from these two platforms across a cohort of
samples should take this into consideration. Another example where multiple platforms and/or pipelines were used to produce a single data type is the Level-3 gene
expression data: most tumor samples were processed at UNC and the normalized gene-expression values are based on the RSEM method, while some tumor samples were
processed at BCGSC and the normalized gene-expression values are based on RPKM.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Understanding the TCGA Data Types

The TCGA dataset is unique in that the tumor samples were assayed using a standard set of platforms and pipelines in order to produce a comprehensive dataset including:

	DNA sequencing of tumor samples and matched-normals (typically blood samples) in order to detect somatic mutations;

	SNP array based DNA copy-number and genotyping analysis of tumor samples and matched-normals;

	DNA methylation of tumor samples;

	messenger RNA (mRNA) expression analysis of the tumor samples to capture the gene expression profile;

	micro-RNA (miRNA) expression profiling of the tumor samples;

In addition, protein expression for a significant fraction (~20%) of all tumor samples was obtained using RPPA (reverse phase protein array).

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Understanding the TCGA Data Levels

TCGA Data Levels

For each type of data, there are typically three levels of data:
* Level 1 typically represents raw, un-normalized data
* Level 2 typically represents an intermediate level of processing and/or normalization of the data;
* Level 3 typically represents aggregated, normalized, and/or segmented data.

The results of integrative or pan-cancer analyses are sometimes referred to as “Level 4” data. More information about
Data Level Classification [https://wiki.nci.nih.gov/display/TCGA/Data+level] can be found on the NCI wiki.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Understanding Data Security

Much of the low-level TCGA and TARGET data (including DNA and RNA reads, and SNP CEL files, for example) are
classified as “controlled access data” and are under the control of the
dbGaP [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/about.html]
Data Access Committee (DAC).

Investigator(s) requesting to receive Genomic data in accordance with the
NIH Genomic Data Sharing Policy [https://gds.nih.gov/]
are required to submit:

	a data access request (DAR)

	a research use statement (RUS)

Note: Requesters and institutional signing officials (SO) must have NIH eRA user IDs to begin this process.
Visit the electronic Research Administration [http://era.nih.gov] (eRA) for more information on
registering for a NIH eRA account. NIH staff may utilize their NIH log-in.
(See the dbGaP Data Access Request Portal [http://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login]
for additional instructions [http://www.genome.gov/20019654].)

Additionally, they must:

	Submit a Data Use Certification [http://www.genome.gov/20019653] (DUC) co-signed by the designated Institutional Official(s) at their sponsoring institution (sample DUC [http://gds.nih.gov/pdf/Model_DUC.pdf]);

	Protect data confidentiality (any data which has been designated “controlled” must be protected accordingly, unless prior release authorization is obtained from a NCI data custodian); and

	Ensure that appropriate data security measures are in place.

In the context of Google Cloud Platform (GCP) projects, it is important to realize that all members of a GCP project have (at least) read access
to all data stored within that project, as well as to all virtual machines, boot-disks, and persistent disks attached to that project.
Therefore, if a PI establishes a GCP project (project-A) for the purposes of analyzing controlled data (eg performing mutation analysis on TCGA sequence
data), then all members of project-A must be authorized to view controlled data. The outputs of certain analyses performed on controlled data,
if they are summary in nature, may no longer be controlled data and could be copied to a second GCP project (project-B) for further downstream
analyses by researchers who are not authorized to view controlled data. Researchers who are not authorized to view controlled data could be made
members of project-B, while users who are authorized could be members of both project-A and project-B.

Note: The PI and the PI’s institution are responsible for and will be held accountable for ensuring the security of controlled data,
not the cloud service provider. The Google Cloud Platform has been certified as
FedRAMP compliant [https://www.fedramp.gov/marketplace/compliant-systems/google-google-services/]
which means that it has been independently assessed and shown to meet all necessary
FedRAMP security controls [https://www.fedramp.gov/files/2015/03/FedRAMP-Security-Controls-Preface-FINAL-1.pdf].
This provides the assurance that the data-security and access control mechanisms
implemented by the Google Cloud Platform and made
available to end-users are sufficient to safeguard the data. However, it remains the PI’s responsibility
to ensure that these access control mechanisms are used appropriately and effectively within the
context of the PI’s GCP project.

You should think about securing controlled data within the context of your GCP project in the same way that you
would think about securing controlled data that you might download to a file-server or compute-cluster at your
own institution. Your responsibilities regarding the appropriate use of the data are the same in a cloud environment.
For more information, please refer to
NIH Security Best Practices for Controlled-Access Data [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?document_name=dbgap_2b_security_procedures.pdf].

“The Investigator and their associated institution assume the responsibility for the security of the dbGaP data. As such, NIH has tried to provide as much information as possible for PIs, institutional signing officials (SOs) and the IT staff who will be supporting these projects, to make sure they understand their responsibilities.” (Ref: The Cloud, dbGaP and the NIH [http://datascience.nih.gov/blog/cloud] blog post 03.27.2015)

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Understanding Data Access

	Public Data Sometimes the word “public” is misinterpreted as meaning “open”. All of the TCGA data is public data, and much of it is open, meaning that it is accessible and available to all users; while some low-level TCGA data is controlled and restricted to authorized users.

	Open-Access Data Depending on how you categorize the data, most of the TCGA data is open-access data. This includes all de-identified clinical and biospecimen data, as well as all Level-3 molecular data including gene expression data, DNA methylation data, DNA copy-number data, protein expression data, somatic mutation calls, etc.

	Controlled-Access Data All low-level sequence data (both DNA-seq and RNA-seq), the raw SNP array data (CEL files), germline mutation calls, and a small amount of other data are treated as controlled data and require that a user be properly authenticated and have dbGaP-authorization prior to accessing these data.

Note that many public, open-access datasets may still be restricted in various ways. Typically, a License document
containing explicit terms of use will be associated with each dataset. Some institutions have their own licenses,
though many use one of the Creative Commons [https://creativecommons.org/] licenses. License terms apply to both
data and source-code, so please be aware of the terms of a license whenever you plan to re-use data or source-code
produced by someone else.

In the earlier days of the TCGA data, although the data was made public as quickly as possible, it was generally under
embargo for some period of time, to allow the TCGA analysis working groups to produce the initial “marker paper”
for each tumor type. Now that the TCGA project is nearing completion, none of the TCGA data is under embargo anymore,
but we still recommend that you review the TCGA Publication Guidelines [http://cancergenome.nih.gov/publications/publicationguidelines].

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

TCGA Data by Access Class

Open-Access TCGA Data

The open-access TCGA data hosted by the ISB-CGC Platform includes:

	Clinical (de-identified) and Biospecimen data: these data were originally provided in XML files (Level-1) by the DCC;

	Somatic mutation data: these data were originally provided in MAF files (Level-2) by the DCC;

	DNA copy-number segments: these data were originally provided as segmentation files (Level-3) by the DCC;

	DNA methylation data: these data were originally provided as TSV files (Level-3) by the DCC;

	Gene (mRNA) expression data: these data were originally provided as TSV files (Level-3) by the DCC;

	microRNA expression data: these data were originally provided as TSV files (Level-3) by the DCC;

	Protein expression data: these data were origially provided as TSV files (Level-3) by the DCC; and

	TCGA Annotations data: annotations were obtained from the TCGA Annotations Manager [https://tcga-data.nci.nih.gov/annotations]

in Google Cloud Storage (GCS)

The data files described above are available to all ISB-CGC users in an open-access GCS bucket (gs://isb-cgc-open).

in BigQuery

The information scattered over tens of thousands of XML and TSV files at the DCC is provided in a
much more accessible form in a series of
BigQuery tables [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_BQ.html#tcga-clinical-biospecimen-and-molecular-data].

For more details, including tutorials and code examples in
Python [https://github.com/isb-cgc/examples-Python] or
R [https://github.com/isb-cgc/examples-R], please see our github repositories [https://github.com/isb-cgc].

This introductory tutorial [https://github.com/isb-cgc/examples-Python/blob/master/notebooks/The%20ISB-CGC%20open-access%20TCGA%20tables%20in%20BigQuery.ipynb]
gives a great overview of all of the tables and pointers on how to get started exploring them. Be sure to check it out!

Controlled-Access TCGA Data

The controlled-access TCGA data hosted by the ISB-CGC Platform includes:

	SNP array CEL files: these Level-1 data files were provided by the DCC and include over 22,000 files for both tumor and matched-normal samples;

	VCF files: these Level-2 data files were provided by the DCC and include over 15,000 files produced by several different centers (primarily Broad and BCGSC);

	MAF files: these “protected” mutation files (Level-2) were provided by the DCC (note that these files were not generated uniformly for all tumor types);

	
	DNA-seq BAM files: these Level-1 data files were provided by CGHub;

	
	over 37,000 of these files are available in Google Cloud Storage (GCS);

	roughly 90% of these BAM files containe exome data, the remaining 10% contain whole-genome data;

	BAM index (BAI) files are also available for all BAM files;

	
	mRNA- and microRNA-seq BAM files: these Level-1 data files were provided by CGHub;

	
	over 13,000 mRNA-seq BAM files are available in GCS;

	over 16,000 miRNA-seq BAM files are available in GCS;

	mRNA-seq FASTQ files: these Level-1 data files were provided by CGHub and include over 11,000 tar files.

in Google Cloud Storage

At this time, all of these controlled-access data files are stored in GCS in the original form, as obtained from the data repository.

In order to access these controlled data, a user of the ISB-CGC must first be authenticated by NIH (via the ISB-CGC web-app).
Upon successful authentication, the users’s dbGaP authorization will be verified. These two steps are required before the user’s
Google identity is added to the access control list (ACL) for the controlled data. At this time, this access must be renewed
every 24 hours.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

TCGA Data by Source Repository

TCGA Data at the NCI-GDC

In July 2016, both the DCC and CGHub were shut down. The official repository for all
NCI datasets, including the TCGA data is now the NCI Genomic Data Commons [https://gdc.nci.nih.gov/].

Some information about the TCGA data at the DCC and CGHub is preserved below for historical reasons,
and in case of need.

TCGA Data at the DCC

Complete sets of open-access and controlled-access data archives were copied from the DCC on October 4th, 2015
into Google Cloud Storage.

Note that for every archive at the DCC, there may be multiple revisions of an archive. A list of the current
latest archives [http://tcga-data.nci.nih.gov/datareports/resources/latestarchive]
can be obtained from the DCC.
The archive
naming convention [https://wiki.nci.nih.gov/display/TCGA/TCGA+Data+Archives#TCGADataArchives-NamingConventions]
includes the disease code, the platform/pipeline name, the archive type (eg data level), the serial index
(which is often the batch number), and the revision number.
If you want to check whether there is a newer version of a specific archive at the DCC than what we currently
have on the ISB-CGC platform, you can check the date column in the latest archive report mentioned above,
or you can compare the archive name to these lists of
open-access archives [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/DCC_archives.04oct2015.open.tsv]
and
controlled-access archives [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/DCC_archives.04oct2015.cntl.tsv]
based on our most recent upload.

Note that all “bio” archives (containing clinical, biospecimen, and other types of XML files) were recently migrated to a new
XSD which is not backwards compatible with the previous XSD. This update took place over the course of the
month of December 2015 and none of these new archives are currently included in any of the current ISB-CGC BigQuery tables or files in GCS.

TCGA Data at CGHub

The complete
listing [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/GCS_listing.v4.tsv]
of the (over 87,000) TCGA data files from CGHub that are currently available in Google Cloud Storage (GCS)
contains the following four columns of information:

	unique CGHub id for the file,

	the TCGA aliquot barcode,

	the GCS object path, and

	the size of the file in bytes.

The final complete CGHub manifest (downloaded in early July, just before CGHub shut down) is also
available [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/LATEST_MANIFEST.tsv]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

TARGET Overview

TARGET: Therapeutically Applicable Research to Generate Effective Treatments

TARGET applies a comprehensive genomic approach to determine molecular changes that drive
childhood cancers. Investigators form a collaborative network to facilitate discovery
of molecular targets and translate those findings into the clinic. TARGET is managed by
NCI’s Office of Cancer Genomics and Cancer Therapy Evaluation Program.

The TARGET data is available at the GDC, both in the
legacy archive [https://portal.gdc.cancer.gov/legacy-archive/search/f?filters=%7B%22op%22:%22and%22,%22content%22:%5B%7B%22op%22:%22in%22,%22content%22:%7B%22field%22:%22cases.project.program.name%22,%22value%22:%5B%22TARGET%22%5D%7D%7D%5D%7D]
which contains over 10,000 files for over 5,000 cases.
Virtually all of this data is low-level (and controlled-access) sequence data
(including 1702 RNA-seq files, 765 miRNA-seq, with the remainder being WXS or WGS DNA-seq BAMs).
Some of this data has been re-processed and is available on the main
GDC Data Portal [https://portal.gdc.cancer.gov/search/s?facetTab=cases&filters=%7B%22op%22:%22and%22,%22content%22:%5B%7B%22op%22:%22in%22,%22content%22:%7B%22field%22:%22cases.project.program.name%22,%22value%22:%5B%22TARGET%22%5D%7D%7D%5D%7D].
This newer dataset so far includes 6183 files representing 3236 cases, and totaling over 17 TB.
Over half of the files (3740) are controlled-access files, including BAM, VCF, and MAF file types,
based on WXS, RNA-seq, and miRNA-seq data.
The remaining 2443 open-access files, include RNA-seq and miRNA-seq quantification,
as well as clinical and biospecimen supplement files.

For more information about the TARGET program, please visit the official
TARGET website [https://ocg.cancer.gov/programs/target].

	About the TARGET Data

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

About the TARGET Data

The ISB-CGC currently hosts over 70 terabytes of TARGET [https://ocg.cancer.gov/programs/target] data in Google Cloud
Storage (GCS [https://cloud.google.com/storage/]) and in BigQuery [https://cloud.google.com/bigquery/].

The ISB-CGC platform is one of NCI’s
Cancer Genomics Cloud Pilots [https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/nci-cloud-initiative]
and part of our mission is to host the TARGET data in the cloud so that researchers around the world
may work with the data without needing
to download and store the data at their own local institutions.

The controlled-access data in Google Cloud Storage is not yet available for
access but will be in June or July of this year.

The open-access data includes RNA-seq and miRNA-seq expression levels, and is available
in BigQuery, along with the open-access clinical and biospecimen information.

	TARGET Data by Access Class

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

TARGET Data by Access Class

Open-Access TARGET Data

The open-access TARGET data hosted by the ISB-CGC Platform includes:

	Clinical (de-identified) and Biospecimen data: these data were originally provided in XML files (Level-1) by the TARGET DCC;

	Gene (mRNA) expression data: these data were originally provided as TSV files (Level-3) by the TARGET DCC;

	microRNA expression data: these data were originally provided as TSV files (Level-3) by the TARGET DCC;

in BigQuery

The information scattered over thousands of XLSX and TSV files at the GDC is provided in
a much more accessible form in a series of `
BigQuery tables [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_BQ.html#target-clinical-biospecimen-and-molecular-data].

Controlled-Access TARGET Data

The controlled-access TARGET data is not yet accessible but will be soon, please
stay-tuned for updates and let us know if you have an urgent need for this data.
(Please note that you will need to obtain dbGaP authorization first, so if you
do not yet have that, you should begin that process.)

in Google Cloud Storage

All controlled-access TARGET data will be available as files in GCS, in their original form
(ie BAM or FASTQ files).

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

CCLE Overview

The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct a detailed genetic characterization of a large panel of human cancer cell lines. The CCLE provides public access analysis and visualization of DNA copy number, mRNA expression, mutation data and more, for 1000 cancer cell lines.

The CCLE aligned reads (BAM files) are currently available in an open-access
Cloud Storage bucket which you can browse
here [https://console.cloud.google.com/storage/browser/isb-cgc-open/NCI-GDC/legacy/CCLE/].

These reads have also been imported into
Google Genomics [https://cloud.google.com/genomics/]
and can be queried using the
GA4GH API [https://media.readthedocs.org/pdf/ga4gh-schemas/latest/ga4gh-schemas.pdf].
Please refer to this
page [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_GG.html]
for additional information.

An older set of BigQuery tables containing CCLE data are available in the
isb-cgc:ccle_201602_alpha
dataset [https://bigquery.cloud.google.com/dataset/isb-cgc:ccle_201602_alpha].
This data will be updated and reformatted to look more like the newer TCGA
and TARGET datasets over the next month or two.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

CGCI Overview

CGCI: Cancer Genome Characterization Initiative

CGCI supports research to comprehensively catalog the genomic alterations in adult and pediatric cancers. The research community can use CGCI data to gain insight into the underlying mechanisms of these cancers and identify potential therapeutic targets.

For more information, please visit the official
CGCI website [https://ocg.cancer.gov/programs/cgci].

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

NCI-GDC Overview

The NCI’s Genomic Data Commons [https://gdc.cancer.gov/]
(NCI-GDC) provides the cancer research community with a
unified data repository that enables data sharing across cancer genomic studies in
support of precision medicine.

The NCI-GDC Data Portal [https://portal.gdc.cancer.gov/] allows users to search for
and download data directly via your web browser or using the
NCI-GDC Data Transfer Tool [https://gdc.cancer.gov/access-data/gdc-data-transfer-tool].
So-called “legacy” data that the NCI-GDC “inherited” from previous data coordinating
centers (eg the TCGA-DCC and CGHub), is available in the
Legacy Archive [https://portal.gdc.cancer.gov/legacy-archive/search/f], while a
“harmonized” [https://gdc.cancer.gov/about-data/gdc-data-harmonization]
data set (re-aligned to GRCh38/hg38 and re-processed by the NCI-GDC) is available
at the main Data Portal [https://portal.gdc.cancer.gov/]. (We will generally
refer to the harmonized/default archive available from the main NCI-GDC Data Portal
as the “current” archive.)

The ISB-CGC is hosting much of this data (both “legacy” and “harmonized” in
Google Cloud Storage (GCS), meaning that you may not need to download any
data from the NCI-GDC if you’re planning on running your analyses on the Google
Cloud Platform. These tables can be previewed and queried conveniently and
interactively from the BigQuery web UI [https://bigquery.cloud.google.com]
or from scripting languages such as R and Python, or from the command-line using the
cloud SDK [https://cloud.google.com/sdk/] utility bq.

In order to help users determine which data at the NCI-GDC is available on the
ISB-CGC platform, we have created a set of metadata tables in BigQuery
(based on NCI-GDC Data Release 5.0 [https://docs.gdc.cancer.gov/Data/Release_Notes/Data_Release_Notes/])
in the isb-cgc:GDC_metadata [https://bigquery.cloud.google.com/dataset/isb-cgc:GDC_metadata] dataset:

	rel5_caseData [https://bigquery.cloud.google.com/table/isb-cgc:GDC_metadata.rel5_caseData]: contains a complete list of all 17268 cases existing in either the legacy or current archives. The following query, for example will return a count of the number of cases by program, together with the number of data files for those cases in the two archives:

SELECT
 program_name AS program,
 COUNT(*) AS numCases,
 SUM(legacy_file_count) AS totLegacyFiles,
 SUM(current_file_count) AS totCurrentFiles
FROM
 `isb-cgc.GDC_metadata.rel5_caseData`
GROUP BY
 program_name
ORDER BY
 numCases DESC

	program

	numCases

	totLegacyFiles

	totCurrentFiles

	TCGA

	11315

	4000803

	351699

	TARGET

	5003

	19042

	12491

	CCLE

	950

	1273

	0

(Note that some files contain data from multiple cases, and these types of files will be counted multiple times in the above query on this case-oriented table, resulting in an over-count of the number of unique files.)

	rel5_current_fileData [https://bigquery.cloud.google.com/table/isb-cgc:GDC_metadata.rel5_current_fileData]: contains a complete list of the 274724 files in the current archive (268541 TCGA files and 6183 TARGET files)

SELECT
 program_name,
 experimental_strategy,
 data_category,
 data_format,
 data_type,
 COUNT(*) AS numFiles,
 SUM(file_size)/1000000000 AS totFileSize_GB
FROM
 `isb-cgc.GDC_metadata.rel5_current_fileData`
GROUP BY
 1, 2, 3, 4, 5
ORDER BY
 totFileSize_GB DESC

results of this query can be viewed
here [https://docs.google.com/spreadsheets/d/1GOGPnRpmHn8iGfMabUpC5MZfxOXvcfqq8aVBBve5r9c/edit?usp=sharing].
The top three rows in the result are the TCGA WXS, TCGA RNA-Seq, and TARGET WXS BAM files,
which total approx 350 TB, 100 TB, and 10 TB respectively.

	rel5_legacy_fileData [https://bigquery.cloud.google.com/table/isb-cgc:GDC_metadata.rel5_legacy_fileData]: contains a complete list of the 805907 files in the legacy archive (718064 TCGA files, 10154 TARGET files, 1273 CCLE files, and 76416 files which are not currently linked to any program or project – 15386 of these are controlled-access files with the TCGA dbGaP identifier, and the remaining 61030 open-access files include ~17k coverage WIG files, ~12k diagnostic SVS images, ~11k clinical/biospecimen xml files). The results of the same query as above (but directed at this table) can be viewed here [https://docs.google.com/spreadsheets/d/1DoyyazK2scq3usp9m48R2-Fc-DJ2aWTVy2-XafNxr3Q/edit?usp=sharing]. The top two rows in the result are the TARGET and TCGA WGS BAM files, totaling over 600 TB and 500 TB respectively.

	rel5_aliquot2caseIDmap [https://bigquery.cloud.google.com/table/isb-cgc:GDC_metadata.rel5_aliquot2caseIDmap]: is a “helper” table in case you need to be able to map between identifiers at different levels. A total of 164911 unique aliquots are identified in this table. The intrinsic hierarchy is program > project > case > sample > portion > analyte > aliquot. We use the term “barcode” where the NCI-GDC uses the term “submitter id”, “gdc_id” for the NCI-GDC’s uuid-style identifier. If a portion was not further divided into analytes or if an analyte was not further divided into aliquots, some of the fields in this table may simply have the string “NA”. For example, this query for a single TCGA case will return 24 rows of results for 2 unique samples, 1 portion from each sample, 5 analytes from the tumor sample and 3 analytes from the blood-normal sample, and finally 24 unique aliquots total.

SELECT
 *
FROM
 `isb-cgc.GDC_metadata.rel5_aliquot2caseIDmap`
WHERE
 case_barcode="TCGA-23-1029"
ORDER BY
 aliquot_barcode

	rel5_slide2caseIDmap [https://bigquery.cloud.google.com/table/isb-cgc:GDC_metadata.rel5_slide2caseIDmap]: is another very similar “helper” table, but for the tissue slide data. A total of 18682 slide identifers are included. In this table the hierarchy is program > project > case > sample > portion > slide.

	GDCfileID_to_GCSurl [https://bigquery.cloud.google.com/table/isb-cgc:GDC_metadata.GDCfileID_to_GCSurl]: is the table to use to determine whether and where a particular NCI-GDC file is available in Google Cloud Storage (GCS). Between the two NCI-GDC archives (legacy and current), there are over one million files. Of these, over 500000 files, totaling over 1700 TB, are available in ISB-CGC buckets in GCS, while roughly 570000 files, totaling over 600 TB are not. This SQL query [https://gist.github.com/smrgit/b7177d455a04c1bf70a2d910223c9000], for example, can be used to get summaries of the NCI-GDC data that is available in GCS (sorted according to the total size in TB):

[image: ../../_images/GDCdata-in-GCS.png]

or conversely, NCI-GDC data that is not available in GCS (again, sorted according to the total size in TB):

[image: ../../_images/GDCdata-not-in-GCS.png]

Let’s take a closer look
(SQL [https://gist.github.com/smrgit/f2eca7b6009598b543d6bfaf4205efa3])
at the large number of open-access files that are not available
in GCS, looking specifically at files where the data_format is either TXT or TSV
and see what types of data that represents. The complete results of this query can be found
here [https://docs.google.com/spreadsheets/d/1tnD2sjXjYIQut5KJXfPJlVKmDJL1SJd5155u0e1litI/edit?usp=sharing],
but the first few rows look like this:

[image: ../../_images/10rows-not-in-GCS.png]

Much of this type of data is provided by ISB-CGC in BigQuery tables rather than
the raw flat files, where the data is more easily explored using Standard SQL
backed a massively-parallel analytics engine and also accessible from R or Python.
Fore more details, please see our
Data in BigQuery [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_BQ.html]
section.

Conversely, let’s take a look at data that is not available in GCS, but is not of
the TXT or TSV type which would be amenable to putting into BigQuery tables:

[image: ../../_images/20rows-not-in-GCS.png]

(Note that the figure above includes only the top 20 categories of data, grouped by the fields
shown and sorted according to total data set size in TB.)
The single largest category of data at the NCI-GDC which is not currently available in any ISB-CGC
buckets consists of the legacy TARGET whole-genome-sequence BAM files (~600 TB). Our
priority will be to upload the missing TARGET data from the “current” archive soon, but please
let us know if there are any important categories of data at the NCI-GDC which you would
like to see hosted in ISB-CGC buckets.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

ISB-CGC Hosted Data Sets

Part of the mission of the ISB-CGC has been to explore the best ways
to use the available cloud technologies to provide access to the
hosted data. To this end, the hosted data is made available
using these three main Google Cloud Platform technologies:

	
	Google BigQuery [https://cloud.google.com/bigquery/] (BQ),

	a massively-parallel analytics engine is ideal for
working with data that is essentially tabular in nature. This includes,
the high-level clinical, biospecimen, and molecular data from the main
NCI programs. It is also where we store a large amount of metadata about
files that are more appropriately stored in Google Cloud Storage,
as well as genome reference sources (eg GENCODE, miRBase, etc).
All of these datasets and tables are completely open access and available
to the research community.

	
	Google Cloud Storage [https://cloud.google.com/storage/] (GCS),

	a cloud-hosted object-store is used to store other types of (typically binary)
data which is typically processed by custom software pipelines.
In our case this means the low-level sequence data, in BAM or FASTQ
format, as well as pathology and radiology images (in SVS or DICOM format).
All controlled-access data is currently only available in GCS – access
to these data requires that a user walk through the required
authentication and authorization steps [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-TCGA-Contolled-Access-Data.html].

	
	Google Genomics [https://cloud.google.com/genomics/] (GG),

	provides a new way to work with sequence-level data, via the GA4GH API [http://ga4gh.org/#/].
Only the CCLE sequence data is currently hosted here, for users to experiment with.
If and when the research community shifts away from BAM files towards using
the GA4GH API, using this technology as our primary data-store may make more sense.

Please refer to the sections below for more details about the data available in these
three Google Cloud technologies:

	Data in BigQuery

	Data in Cloud Storage

	Data in Google Genomics

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Data in BigQuery

The information scattered over tens of thousands of XML and TSV files in two separate archives at the
NCI-GDC [https://gdc.cancer.gov/] is provided in a
much more accessible form in a series of open-access BigQuery tables.
For more details, including tutorials, SQL,
and code examples in Python [https://github.com/isb-cgc/examples-Python] or
R [https://github.com/isb-cgc/examples-R],
please see our
Query of the Month [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/QueryOfTheMonthClub.html] page and our
github repositories [https://github.com/isb-cgc].
Note that dbGaP authorization is not required to access these tables!

If you have suggestions or requests for additional data (eg TCGA isoform expression data,
or other reference data sources) that you would like to see made available as BigQuery tables,
please let us know (feedback@isb-cgc.org) and we will try to make that happen.

BigQuery Datasets and Tables

Data made available by the ISB-CGC through BigQuery is organized into several open-access
datasets, where a dataset is made up of multiple tables.
Datasets in BigQuery are uniquely identified based on the Google Cloud Platform (GCP) project name
(in this case isb-cgc), and the dataset name, separated by a colon (or a period, in standard SQL),
eg isb-cgc:TCGA_bioclin_v0. Tables are uniquely identified by appending the table name,
preceded by a period, eg isb-cgc:TCGA_bioclin_v0.Clinical.

The following sections describe each of the major datasets that are currently publicly-accessible,
and the tables that each one contains. For additional details regarding the ETL (extract, transform,
and load) process for each of these data types, please refer to the data-type specific details
below.

For a more visual overview of the contents of BigQuery and how they relate to one another,
you might find this
view [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/BQ_overview.html]
useful.

TCGA Clinical, Biospecimen and Molecular Data

The TCGA data is organized into three separate datasets: TCGA_bioclin_v0 contains clinical
and other metadata; TCGA_hg19_data_v0 contains the original TCGA molecular data, which was
originally generated based on the GRCh37/hg19 reference; and TCGA_hg38_data_v0 contains
the newer GRCh38/hg38-based data now available at the NCI-GDC.

All of the tables include one or more of the following identifiers which can be used for
performing cross-table JOINs: case_barcode, sample_barcode, and aliquot_barcode.
(Note that these were previously called ParticipantBarcode, SampleBarcode, and
AliquotBarcode.) In addition, most tables also containa a project_short_name field
(formerly called Study, eg TCGA-LUAD, TCGA-BRCA, etc).

(Note that in an attempt to be consistent with the NCI-GDC terminology, what we used to call a
project is now called a program (eg TCGA, TARGET, CCLE, etc), while what was
formerly known as a study is now called a project (and has also been prepended with the
program name, so that LUAD has become TCGA-LUAD, etc).

Each dataset and table described below is linked directly the corresponding view in the
BigQuery web UI [https://bigquery.cloud.google.com] where you can see the schema and
other additional information for each table, preview its contents, etc.

	isb-cgc:TCGA_bioclin_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_bioclin_v0]:

	Clinical [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_bioclin_v0.Clinical]:
This table is contains one row for each TCGA case (aka patient or participant) with any
available clinical information – over 11,000 cases are represented.
Any given field in
this table may be null for many patients, depending on tumor-type or data-availability.
For example, the field tobacco_smoking_history is available for only about 3,000 patients.

	Biospecimen [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_bioclin_v0.Biospecimen]:
This table is a sample-centric table, and contains one row of information for each of the (over 23,000)
TCGA samples. Any given field in this table may be null for many samples, depending on the
sample-type or the tumor-type.

	Annotations [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_bioclin_v0.Annotations]:
This table contains annotations and related information obtained from the
TCGA Annotations Manager [https://wiki.nci.nih.gov/display/TCGA/TCGA+Annotations+Manager+User's+Guide]
(formerly available at the TCGA DCC).

	isb-cgc:TCGA_hg19_data_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_hg19_data_v0]:

	Copy_Number_Segment_Masked [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.Copy_Number_Segment_Masked]:
This table contains all available Copy Number segmentation data across all TCGA samples.
Each row in the table describes a single copy-number segment for a single aliquot.
The fields chromosome, start_pos, and end_pos specify the chromosomal coordinates (1-based)
for the segment, the num_probes field specifies the number of probes on the SNP chip that
went into estimating the mean copy-number for this segment, and finally the segment_mean
provides the log2(CN/2) mean value estimate. Values near 0 represent “normal” copy-number,
while larger positive values indicate amplifications and negative values indicate deletions.

	DNA_Methylation [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.DNA_Methylation]:
This table contains all of the DNA methlyation data for all TCGA samples assayed on either the
HumanMethylation 27k or 450k platforms. Please note that this is a very large table
(with close to 4 billion rows), so query it with caution – a single query will cost your GCP project $2-3.
Each row contains the methylation “beta” for a particular aliquot at a particular probe.
Details about a particular probe, based on the Probe_Id field value (eg cg03879918)
can be obtained from the methylation_annotation table (available in the
isb-cgc:platform_reference [https://bigquery.cloud.google.com/dataset/isb-cgc:platform_reference] dataset).
For convenience, this data is also available in 24 chromosome-specific tables so that more
targeted queries will need to scan less data (and will therefore be cheaper).

	miRNAseq_Expression [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.miRNAseq_Expression]:
This table contains all of the miRNAseq stem-loop expression data for all TCGA samples assayed on either the
Illumina GA or Illumina HiSeq platforms.

	miRNAseq_Isoform_Expression [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.miRNAseq_Isoform_Expression]:
This table contains all of the miRNAseq isoform-level expression (aka isomiR) data for all
TCGA samples assayed on either the Illumina GA or Illumina HiSeq platforms.

	Protein_Expression [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.Protein_Expression]:
This table contains protein expression quantification estimates based on the RPPA (reverse phase protein array)
platform. Note that only a subset (~70%) of the TCGA tumor samples were assayed on this platform. This
technology uses antibodies which bind (sometimes non-specifically) to the target protein. In certain cases,
an antibody may target a specific phosphorylated protein. Each row in this table
includes an estimate of the protein_expression, with the following fields specifying the
protein: gene_name (aka symbol), protein_name, protein_base_name, and phospho.
Additional fields include the antibody_source and validation_status.

	RNAseq_Gene_Expression_UNC_RSEM [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM]:
This table contains gene expression data from 10,289 samples assayed on the Illumina HiSeq platform
and 818 samples assayed on the Illumina GA platform, all of which were then
processed through the UNC “RNASeqV2” RSEM pipeline. Each row in this table contains the RSEM expression
estimate for a single gene in a single aliquot. The gene symbol can be found in the fields
original_gene_symbol (as originally given in the file submitted by UNC to the TCGA DCC), and
HGNC_gene_symbol (the most current HGNC-approved gene symbol at the time this table was created).
More details about specific genes can be obtained from any of the GENCODE tables
available in the genome_reference [https://bigquery.cloud.google.com/dataset/isb-cgc:genome_reference] dataset.

	Somatic_Mutation_DCC [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.Somatic_Mutation_DCC]:
This table contains all somatic mutations called across all TCGA tumor samples, based on aggregating all
of the MAF files available at the DCC as of June 2016. Each mutation call was annotated using
Oncotator [https://www.broadinstitute.org/cancer/cga/oncotator],
and many (though not all) of the resulting annotation fields were included in this table. Since multiple
MAF files are sometimes available for a single tumor type, the MAF ETL process included steps to
filter out duplicate mutation calls.

	Somatic_Mutation_MC3 [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg19_data_v0.Somatic_Mutation_MC3]:
This table is based on the unified “MC3” TCGA call set recently published by the TCGA Network.
For more details or the original source file, please refer to Synapse [https://www.synapse.org/#!Synapse:syn7214402/wiki/405297].
The original input file contained 114 columns but many were empty or duplicates of other columns. This table contains 75 columns.
Additional details can be found in the table schema.

	isb-cgc:TCGA_hg38_data_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_hg38_data_v0]:
This dataset by and large mirrors the TCGA_hg19_data_v0 dataset, and is based on the GRCh38/hg38 data
now available from the NCI-GDC. In some cases the new data has been realigned to the new genome (in the case
of any DNAseq or miRNA/mRNAseq based data), or the coordinates have been “lifted over” from hg19 to hg38
(in the case of probe/array-based data such as the SNP6/copy-number and the DNA Methylation data).

A set of
reference data [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/Reference-Data.html]
tables have also been created in BigQuery which you may find helpful when analyzing the TCGA data.

TARGET Clinical, Biospecimen and Molecular Data

The TARGET data is organized into two separate datasets: TARGET_bioclin_v0 contains clinical
and other metadata; and TARGET_hg38_data_v0 contains
the GRCh38/hg38-based data now available at the NCI-GDC.

All of the tables include one or more of the following identifiers which can be used for
performing cross-table JOINs: case_barcode, sample_barcode, and aliquot_barcode.
In addition, most tables also containa a project_short_name field
(formerly called Study, eg TARGET-AML, etc).

Each dataset and table described below is linked directly the corresponding view in the
BigQuery web UI [https://bigquery.cloud.google.com] where you can see the schema and
other additional information for each table, preview its contents, etc.

	isb-cgc:TARGET_bioclin_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TARGET_bioclin_v0]:

	Clinical [https://bigquery.cloud.google.com/dataset/isb-cgc:TARGET_bioclin_v0.Clinical]:
This table is contains one row for each TARGET case (aka patient or participant) with any
available clinical information – over 5,000 cases are represented. Note that most
of these cases do not yet have molecular data available in BigQuery.

	Biospecimen [https://bigquery.cloud.google.com/dataset/isb-cgc:TARGET_bioclin_v0.Biospecimen]:
This table is a sample-centric table, and contains one row of information for each of the (over 7,000)
TARGET samples.

	isb-cgc:TARGET_hg38_data_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TARGET_hg38_data_v0]:
This dataset will by and large mirror the TARGET_hg38_data_v0 dataset, and is based on the GRCh38/hg38 data
now available from the NCI-GDC. In some cases the new data has been realigned to the new genome (in the case
of any DNAseq or miRNA/mRNAseq based data), or the coordinates have been “lifted over” from hg19 to hg38
(in the case of probe/array-based data such as the SNP6/copy-number and the DNA Methylation data).

	miRNAseq_Expression [https://bigquery.cloud.google.com/table/isb-cgc:TARGET_hg38_data_v0.miRNAseq_Expression]:
This table contains all of the miRNAseq stem-loop expression data currently available from the NCI-GDC.

	miRNAseq_Isoform_Expression [https://bigquery.cloud.google.com/table/isb-cgc:TARGET_hg38_data_v0.miRNAseq_Isoform_Expression]:
This table contains all of the miRNAseq isoform-level expression (aka isomiR) data currently available from the NCI-GDC.

	RNAseq_Gene_Expression [https://bigquery.cloud.google.com/table/isb-cgc:TARGET_hg38_data_v0.RNAseq_Gene_Expression]:
This table contains gene expression data from 481 samples (434 cases).
Each row in this table contains the HTSeq expression
estimates for a single gene in a single aliquot. The gene symbol can be found in the field
gene_name and the Ensembl ID can be found in the Ensembl_gene_id and Ensembl_gene_id_v fields.

Additional Metadata

Additional related metadata is organized into the following datasets:

	isb-cgc:metadata [https://bigquery.cloud.google.com/dataset/isb-cgc:metadata]:
This dataset currently contains two tables which contain metadata about two additional
TCGA data types: pathology and radiology images. More information about these
image datasets can be found on the
TCGA-images [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/TCGA-images.html]
documentation page.

	isb-cgc:GDC_metadata [https://bigquery.cloud.google.com/dataset/isb-cgc:GDC_metadata]:
This dataset contains several tables which contain metadata describing the cases and
files at the NCI-GDC, in both the legacy and the current data archives.

	isb-cgc:tcga_seq_metadata [https://bigquery.cloud.google.com/dataset/isb-cgc:tcga_seq_metadata]:
This dataset contains several tables with metadata about the original hg19 sequence data
(including both BAM and FASTQ files).
The important common identifiers to link these tables back to other information is the CGHubAnalysisID
(which sometimes may be written CGHub_analysisID). In alphabetical order by name, these tables are:

	isb-cgc:tcga_cohorts [https://bigquery.cloud.google.com/dataset/isb-cgc:tcga_cohorts]:
This dataset contains a series of curated cohorts, one for each of the 33 TCGA tumor types, named
according to the tumor abbreviation, eg BRCA. A “cohort” is defined as a paired list of case-
and sample-barcodes. In order to be included, molecular data from at least one of the main platforms
must be available for that sample, and there must be no disqualifying annotation for that sample or
the case (aka patient). For example, the
BRCA cohort table [https://bigquery.cloud.google.com/table/isb-cgc:tcga_cohorts.BRCA]
contains 1086 unique cases and 2221 unique samples, but a query of the Clinical table for all
BRCA cases will return 1097 cases, and a similar query of the Biospecimen table for all
BRCA samples will return 2302 samples. The Annotation table contains annotations of one type or
another for 122 “entities” in the TCGA-BRCA proejct affecting 33 BRCA cases, 2 BRCA samples, 18 BRCA analytes,
and 69 BRCA aliquots.

ETL (Extract, Transform, Load) Details

The data in the BigQuery tables is generally identical to the information that
can also be obtained from the NCI-GDC, but for users
interested in the nitty-gritty details, information is provided here about the ETL
(extract, transform and load) steps that were performed for each of the data types.

Before we go into data-type-specific details, a few general notes on
formatting and data curation:

	All data uploaded into ISB-CGC BigQuery tables use a consistent
UTF-8 character set. If the encoding of a character from
the original file could not be detected, that character was ignored.
Character encodings were detected using the Python
library Chardet [https://www.google.com/url?q=https://pypi.python.org/pypi/chardet&sa=D&usg=AFQjCNEqIpFiwf3f-ynJmNtP1ZqXe-TvRg].

	All missing information value strings such as: none, None,
NONE, null, Null, NULL, , NA, __UNKNOWN__, <blank>
, and ?; are represented as NULL values in the BigQuery
tables (or may not appear at all, depending on the table schema).

	Numbers are stored as integer or floating point values. The original ASCII
files sometimes used scientific notation or included comma separators, but
these are not preserved in the BigQuery tables.

	End of File (EOF) and End of Line (EOL) delimiters, including
CTRL-M characters, were all removed when the raw files were originally parsed.

	Single and double quotes around the values were removed, but in cases where
there were quotation marks within a string, they were not removed.

	Whenever necessary, the SDRF file (in the mage-tab archive associated with each
data archive) was parsed to find the correct association between the
aliquot barcode and the Level-3 data file(s).

Data-Type Specific ETL Details

	Clinical

	Biospecimen

	Somatic DNA Mutations

	DNA Copy-Number Segments

	DNA Methylation

	mRNA Expression

	microRNA Expression

	Protein Expression (RPPA)

	Annotations

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Clinical

The
Clinical [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.Clinical]
table contains one row per TCGA participant (aka patient or donor).
Each TCGA participant is uniquely represented by a
TCGA barcode [https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode]
of length 12, eg TCGA-2G-AAM4. (For more information on how TCGA barcodes
were created and how to “read” a TCGA barcode, click on the preceding link.)

Clinical Feature Selection

In the first pass, any
XML features with the tag procurement_status=Completed
which were found to exist in at
least 20% of the participants in any one Study (aka tumor-type) were considered for selection.
A few important features related to smoking, pregnancy, etc were added to the
list during a manual-curation pass.

Selected fields from the both the clinical,
auxiliary, ssf, and omf XML files were then extracted and loaded into the BigQuery table.

Additionally, only the most recent follow-up information was included
(for patients where multiple follow-up sections existed in the
clinical XML file).

XML Parsing

Each clinical XML file is divided into admin and patient blocks, and
each of these were processed separately.

While iterating through the patient block of information, all elements
(XML tags) and their values were collected. For follow-up blocks, only the
most recent (based on sequence number) sub-block elements were kept.

In the final pass, patient elements and follow-up elements were carefully
merged with preference given to follow-up elements.

Transforms

Different survival-related fields are completed based on the value of the vital_status field:

	for all patients with vital_status=Alive:

	days_to_last_known_alive should not be NULL

	days_to_last_known_alive is set to days_to_last_followup

	days_to_death is set to NULL

	for all patients with vital_status=Dead:

	days_to_death should not be NULL (if it is NULL, and days_to_last_followup is not NULL, then vital_status is set to “Alive”

	days_to_last_known_alive is set to days_to_death

	days_to_last_followup is set to NULL

	pregnancies and total_number_of_pregnancies were merged into a
single pregnancies field. Counts above four are represented as
4+ (e.g: [0,1,2,3,4+])

	number_of_lymphnodes_examined and lymph_node_examined_count were
merged into a single number_of_lymphnodes_examined field

	
	country and country_of_procurement were merged into a

	single country field

The following fields were extracted from the ssf XML file:

	histological_type

	country

	other_dx

	tobacco_smoking_history

	gleason_score_combined

	history_of_neoadjuvant_treatment

The following fields were extracted from the omf XML file:

	other_malignancy_malignancy_type

	other_malignancy_anatomic_site

	other_malignancy_histological_type

When an auxiliary XML file exists for a participant, and the batch numbers in
both the clinical XML and the auxiliary XML file match, the following fields
are extracted from the auxiliary XML file and added to the Clinical table:

	hpv_calls,

	hpv_status,

	mononucleotide_and_dinucleotide_marker_panel_analysis_status,

Finally, the patient BMI was calculated based on the height and weight values
(when both were present) and was added to the Clinical table.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Biospecimen

The
Biospecimen_data [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.Biospecimen_data]
table contains one row per TCGA sample. Each TCGA sample is
uniquely represented by a
TCGA barcode [https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode]
of length 16, eg TCGA-2G-AAM4-10A. (For more information on how TCGA barcodes
were created and how to “read” a TCGA barcode, click on the preceding link.)

XML Parsing

The TCGA data at the DCC exists in XML files which have been uploaded into
Google Cloud Storage.
Selected fields from these XML files
were then extracted and loaded into the “Biospecimen_data” table in BigQuery.

Some of the biospecimen values in the XML files are available on a per-slide
and/or per-portion basis, and these have been aggregated and averaged.
The number of slides and the number of portions per sample is also included
in the table.

Filters

	Samples for which is_ffpe=True were removed.

	Patients or Samples for which Project value was not TCGA were removed.

The following fields were extracted from the ssf XML file:

	days_to_sample_procurement

	tissue_anatomic_site

	tissue_anatomic_site_description

	tissue_anatomic_site

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Somatic DNA Mutations

The
Somatic Mutations table [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.Somatic_Mutation_calls]
in BigQuery contains somatic mutation calls collected from the open-access
MAF [https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Specification]
files from 30 tumor types.

For each MAF file, some
simple data-cleaning performed, it was then annotated using
Oncotator [https://www.broadinstitute.org/cancer/cga/oncotator]
and then further processed to remove duplicates before being merged into a single table.

Data-Cleaning

	Remove any lines where the build is not 37

	Remove any lines where the chr is not in [1-22, X, Y]

	Remove any lines where the Mutation_Status is not Somatic

	Remove any lines where the Sequencer is not an Illumina platform

	Change the column labels to match what Oncotator expects (eg ncbi_build becomes build, chromosome, chr, etc.

Oncotator Annotation

Each file was then annotated using Oncotator version 1.5.1, with the Jan2015 database,
and the options --input_format=MAFLITE --output_format=TCGAMAF.

The outputs of Oncotator were lightly processed to change the column labels and to remove
certain special characters from strings.

Duplicate Removal

Because many tumor types have several “current” MAF files and deciding which one is the
“best” is a non-trivial process, and also because some tumor samples may have had mutations
called relative to a tissue normal and also relative to a blood normal, it is possible that
the same mutation has been called multiple times. In order to eliminate over-counting of
mutations, we sought to remove these duplicate calls from the result of concatenating all
of the annotated MAF files using the following rules:

	if a mutation in the same position is called in a particular tumor sample with respect to multiple matched normals, we prefer the “blood derived normal” over the “solid tissue normal”

	if a mutation in the same position is called in multiple aliquots for one tumor sample, we prefer the “D” analyte over the “W” analyte (eg TCGA-B0-5695-01A-11D-1534-10 over TCGA-B0-5695-01A-11W-1584-10)

	if both aliquots are “D” (or both are “W”) analytes, then we choose based on the data-generating-center (the final two characters in the aliquot barcode), preferring first:

	01, 08, or 14 (all of which refer to broad.mit.edu)

	09, 21, or 30 (all of which refer to genome.wustl.edu)

	10 or 12 (both of which refer to hgsc.bcm.edu)

	13 or 31 (both of which refer to bcgsc.ca)

	18 or 25 (both of which refer to ucsc.edu)

	finally, in the event that a mutation in the same position was called by the same center, with the same type of matched normal, and the same type of analyte, then we choose the aliquot with the larger value in the final 4-digit sequence in the barcode (positions 21:25)

In addition, any exact duplicates (ie all fields describing a mutation are the same) in the
merged file are removed, and the final result uploaded into BigQuery.
The result is a single table containing over 5.8 million mutations called on 8435 tumor samples from 8373 patients.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

DNA Copy-Number Segments

The
Copy_Number_segments [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.Copy_Number_segments]
table contains one row per copy-number segment per TCGA aliquot.
Each TCGA aliquot is uniquely represented by a
TCGA barcode [https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode]
of length 24, eg TCGA-04-1517-01A-01D-0533-01. (For more information on how TCGA barcodes
were created and how to “read” a TCGA barcode, click on the preceding link.)

Platform

DNA Copy-Number data was generated for the TCGA project using the
Affymetrix GenomeWide Human SNP 6.0 Array [http://www.affymetrix.com/catalog/131533/AFFY/Genome-Wide+Human+SNP+Array+6.0#1_1].

Pipeline

DNA Copy-Number data was generated for the TCGA project at the
Broad Genome Characterization Center [http://www.broadinstitute.org/collaboration/gcc/].
A DESCRIPTION.txt file is included with each data archive at the DCC describing the algorithms,
methods, and protocols used to produce the Level-1, Level-2, and Level-3 data.

ETL Details

Each Level-3 data archive contains 4 output files per sample assayed: two based on the hg18 reference, and two based on the hg19 reference.
The BigQuery table is populated only with the files ending with nocnv_hg19.seg.txt.
The num_probes and segment_mean fields in the raw files are sometimes represented using
Exponential Scientific Notation (eg 8.7E+07)
and were interpreted as integer or floating-point values respectively.

The mapping between TCGA aliquot barcodes and Level-3 data files was obtained from the SDRF file.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

DNA Methylation

The
DNA Methylation [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.DNA_Methylation_betas]
table contains one row per CpG probe and TCGA aliquot.
Each TCGA aliquot is uniquely represented by a
TCGA barcode [https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode]
of length 24, eg TCGA-04-1517-01A-01D-0533-01. (For more information on how TCGA barcodes
were created and how to “read” a TCGA barcode, click on the preceding link.)

The platform annotation information needed to analyze this data is also available in a BigQuery table. For more
information, see the Reference Data section of this documentation.

Platform

DNA Methylation data was generated for the TCGA project using the Illlumina HumanMethylation27 BeadChip
and its successor, the
HumanMethylation450 [http://www.illumina.com/products/methylation_450_beadchip_kits.html]
BeadChip.

Pipeline

DNA Methylation data was generated for the TCGA project at the JHU-USC genome characterization center.
A DESCRIPTION.txt file is included with each data archive at the DCC describing the algorithms,
methods, and protocols used to produce the Level-1, Level-2, and Level-3 data.

ETL Details

The BigQuery table is populated only with the files matching the pattern
%.HumanMethylation%.txt. The data from both 27k and 450k platform have been
merged together into a single table. A few samples were run on both platforms, and
for those samples, the 450k data takes precedence.
The table includes a platform column indicating the source of each data value.

In addition:

	any CpG probes for which the Level-3 Beta_Value is NA or NULL, are left out

	only the Probe_Id and Beta_Value fields from the Level-3 data files are stored in the BigQuery table

Since the DNA_Methylation_betas table is so large, we also provide chromosome-specific
tables that can be used for faster queries.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

mRNA Expression

Gene expression data for the TCGA project has been produced by two different centers, using several
different platforms and fundamentally different pipelines. Most of the data, from each center, was
produced using the Illumina HiSeq platform and for that reason the first two BigQuery tables containing
gene expression data are based on those specific subsets of the TCGA mRNA expression data:

	the majority of the data was produced by the UNC LCCC [https://unclineberger.org/] and the resulting normalized RSEM values are stored in one table [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]

	and a subset of the data was produced by the BC GSC [http://www.bcgsc.ca/] and the resulting normalized RPKM values are stored in another table [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.mRNA_BCGSC_HiSeq_RPKM]

UNC RNAseqV2 Pipeline

A DESCRIPTION.txt file describing the algorithms,
methods, and protocols used to produce the Level-1, Level-2, and Level-3 data
can be obtained from the TCGA DCC.

The BigQuery table was populated using the values in files matching the pattern
%.rsem.genes.normalized_results. These raw “RSEM genes normalized results”
files have two columns, both of which are stored in the BigQuery table. The first
column contains the gene_id which contains two parts separated by a |, eg: TP53|7157.
The second column contains the normalized_count representing the expression value for that gene.

The gene_id column is split into two components and stored as separate columns:
original_gene_symbol and gene_id. Based on the gene_id, the current HGNC approved
gene symbol is
looked up [http://www.genenames.org/help/rest-web-service-help]
and added as a third column: HGNC_gene_symbol.

BCGSC RNAseq Pipeline

A DESCRIPTION.txt file describing the algorithms,
methods, and protocols used to produce the Level-1, Level-2, and Level-3 data
can be obtained from the TCGA DCC.

The BigQuery table was populated using the values in files matching the pattern
%.gene.quantification.txt. These raw “gene quantification” files have
four columns: gene, raw_counts, median_length_normalized, and RPKM.
From these the gene and the RPKM values are stored in the BigQuery table.
The gene string contains either two or three parts, similarly
separated by a \|, eg TP53\|7157_calculated or Mir_1302\|?\|3of7_calculated.

The gene string is split into two or three components and stored as separate columns:
original_gene_symbol and gene_id and, if there is a third component, a gene_addenda column.
If one component is simply ?, that character string is replaced by a NULL value.
Finally, the current HGNC approved gene symbol is
looked up [http://www.genenames.org/help/rest-web-service-help]
and added as an additonal column: HGNC_gene_symbol.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

microRNA Expression

The current ISB TCGA data pipeline uses a Perl script
expression_matrix_mimat.pl provided by BCGSC which reads the
isoform data files and outputs expression values for “mature microRNAs”.
This output matrix contains a consistent number of mature microRNAs,
referred to using a combination of the microRNA
gene name and the unique accession number, eg:
“hsa-mir-21.MIMAT0000076”. During ETL, this string is split into two
parts and stored as separate columns in the BigQuery
table [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.miRNA_expression].
The entire matrix is then melted into a flat structure (known as the tidy data format) and loaded
into the table.

Only the isoform files matching the pattern
%.hg19.mirbase20.isoform.quantification.txt and containing hg19 data were used. The aliquot barcode
information was obtained from the SDRF file associated with the Level-3
isoform data file.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Protein Expression (RPPA)

The raw protein data file contains just two columns: The “Composite Element REF”, which corresponds to the third column in the antibody
annotation file, and the estimated expression value for that particular
protein. The “Composite Element REF” was parsed to generate additional
information(see details in the formatting section). The BigQuery
table [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.Protein_RPPA_data]
was populated with all TCGA Level-3 RPPA data matching the pattern -
“%_RPPA_Core.protein_expression%.txt”.

The antibody annotation files are parsed to get the relationship between
the antibody name and the associated proteins, and genes. Below is the
detailed explanation about the generation of the antibody, gene, protein
map.

Generation of Composite_element_ref, gene, and protein name map

 (Manual Curation of the gene and protein names)

	Check the antibody annotation files for missing columns.

	If “protein_name” is missing, generate one from
“composite_element_ref”

	Make a map of ‘composite_element_ref’,’ gene_name’,
‘protein_name’ values.

	Check any other variant of the gene and protein symbols in the table.

	HGNC Validation

	If the gene symbol is in the HGNC approved symbols, ‘Approved’.
 Gene_symbol = Gene_symbol.

	If not, check the Alias symbols. If found, Gene_symbol =
Alias_symbol.

	If not, check the Previous symbols. If found, Gene_symbol =
“Approved” Gene_symbol.

	If not, Gene_symbol = Gene_symbol

	The file generated is manually curated and fed back into the
algorithm.

Formatting

	Duplicate the rows if there are multiple genes concatenated in the
“gene_name” value. For example: ‘gene_name’ with value like ‘AKT1
AKT2 AKT3’ is stored as three separate rows with each gene in a row.

	‘Protein_Name’ is split into ‘Protein_Basename’, Phospho’ and are
stored as separate columns.

	‘Composite element ref’ is parsed to get ‘validationStatus’ and
‘antibodySource’ – both are stored as separate columns in the
BigQuery table.

	Data from both Illumina GA and HiSeq platforms are stored in the same
table.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Annotations

The TCGA Annotations BigQuery
table [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.Annotations]
was created based on the contents of the JSON file obtained from the TCGA
Annotation manager Web Service
API [https://wiki.nci.nih.gov/display/TCGA/TCGA+Annotations+Web+Service+User's+Guide].
The deeply nested JSON file was first flattened, and then a subset of the
fields were selected to be loaded into the BigQuery table. In the flattening
process, sub-level field names were prefixed with the parent name, separated by
an underscore. These names were then abbreviated to shorter names,
as specified in the table below.
Please refer directly to BigQuery for the table
schema [https://bigquery.cloud.google.com/table/isb-cgc:tcga_201607_beta.Annotations]

	Original field name

	New field name

	annotationCategory_annotationClassification_annotationClassificationName

	annotationClassification

	annotationCategory_categoryId

	annotationCategoryId

	annotationCategory_categoryName

	annotationCategoryName

	id

	annotationId

	items_disease_abbreviation

	Study

	items_item

	itemBarcode

	items_itemType_itemTypeName

	itemTypeName

	notes_noteText

	annotationNoteText

	notes_dateAdded

	dateAdded

	notes_dateEdited

	dateEdited

Sample and Participant barcodes are filled in (ie not null) whenever the
“itemBarcode” is at least 16 or 12 characters long, respectively. For example, a
“Shipped Portion” would result in a filled in “ParticipantBarcode” and
“SampleBarcode” fields. Please note, however, that the annotation applies only to the item
specified in the “itemBarcode” field, the type of the item is specified in the “itemTypeName” field
with the following caveat. If an annotation is on the participant, then it applies to all
its samples, if on a sample, to all its portions but does not apply to other samples for that
participant, and so on down to the aliquot, which only applies to that aliquot.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Data in Cloud Storage

At this time, all controlled-access data files are stored in Google Cloud Storage (GCS)
in their original form, as obtained from the data repository. This includes
these major data types and formats:

	RNA-Seq FASTQ files (unaligned reads, typically compressed tar-files)

	DNA-Seq and RNA-Seq BAM files (aligned reads)

	Genome-Wide SNP6 array CEL files

	Variant-calls in VCF files

In order to access these controlled data, a user of the ISB-CGC must first be
authenticated by NIH (via the ISB-CGC web-app).
Upon successful authentication, the users’s dbGaP authorization will be verified.
These two steps are required before the user’s
Google identity is added to the access control list (ACL) for the controlled data.
At this time, this access must be renewed every 24 hours.

Summary of Data Available in GCS

	Format

	Data Type

	# of Files

	Total Size

	BAM

	DNA-Seq

	73487

	1407 TB

	BAM

	RNA-Seq

	47818

	216 TB

	FASTQ

	RNA-Seq

	13207

	91 TB

	CEL

	DNA (SNP6)

	22529

	1.6 TB

	VCF

	DNA-Seq

	47319

	0.5 TB

Working with data in GCS

Working with large-scale data hosted by the ISB-CGC in Google Cloud Storage
requires some familiarity with tools such as the
Google Cloud SDK [https://cloud.google.com/sdk/],
Google Compute Engine [https://cloud.google.com/compute/],
Virtual Machines [https://en.wikipedia.org/wiki/Virtual_machine] and
Docker [https://www.docker.com/what-docker#/VM].

Please see our
DIY Workshop [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/DIYWorkshop.html]
and in particular the section on “Computing in the Cloud” for additional references and tutorial material.

Our metadata tables in BigQuery can be used to explore the available data and choose
which BAM files you’re most interested in working with – before you take on
processing an entire petabyte of data! Feel free to email us at info@isb-cgc.org
with questions.

BAM-slicing in the Cloud

BAM files can vary in size from close to 1 TB down to 1 MB, and frequently a researcher
is only interested in extracting a small slice of the entire sequence. This is referred
to as “BAM-slicing” and the latest release (1.4 [https://github.com/samtools/htslib/releases/tag/1.4]) of the
htslib library [https://github.com/samtools/htslib] adds the capability to
perform BAM-slicing directly on BAM files in GCS to widely used tools such as
samtools [https://github.com/samtools/samtools].
(You will need to build with --enable-libcurl
to enable support for access to data both in GCS and S3.)
This new functionality allows you to run, for example:

$./samtools view gs://isb-cgc-open/NCI-GDC/legacy/CCLE/CCLE-LUSC/WXS/Aligned_reads/0a109993-2d5b-4251-bcab-9da4a611f2b1/C836.Calu-3.2.bam 7:140453130-140453140

If you want to access a controlled-access BAM file, you’ll need to provide credentials first:

$ export GCS_OAUTH_TOKEN=`gcloud auth application-default print-access-token`

If you run into problems, it’s a good idea to verify that you have the correct url and
also that you have access to this file by using the
gsutil [https://cloud.google.com/storage/docs/gsutil] command-line tool from the
cloud SDK [https://cloud.google.com/sdk/]:

$ gsutil ls -l gs://isb-cgc-open/NCI-GDC/legacy/CCLE/CCLE-LUSC/WXS/Aligned_reads/0a109993-2d5b-4251-bcab-9da4a611f2b1/C836.Calu-3.2.bam

Other Options for BAM-slicing

The NCI-GDC [https://gdc.cancer.gov/] has also implemented a BAM-slicing API on top of
their data repository. This API can be accessed programmatically as documented
here [https://docs.gdc.cancer.gov/API/Users_Guide/BAM_Slicing/]
or interactively on any of the file-specific data-portal pages like
this one [https://gdc-portal.nci.nih.gov/files/91081819-79c8-4de6-bfdb-742df760c08b]
for a TCGA-BRCA whole-exome BAM file. (The “BAM Slicing” button is in the upper
right corner of the page.)

The GA4GH API provides another option to BAM-slicing, and has been implemented
by Google on top of the database-backed Google Genomics technology. You can
find more information about the GA4GH API
here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_GG.html]
with information about some open-access data hosted by the ISB-CGC which you
are welcome to experiment with.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Data in Google Genomics

Google Genomics [https://cloud.google.com/genomics/] is a database-backed technology that allows users to query
reads and variants using the
GA4GH API [https://media.readthedocs.org/pdf/ga4gh-schemas/latest/ga4gh-schemas.pdf].

At this time, the ISB-CGC is hosting two open-access datasets in Google Genomics containing
the CCLE DNA-Seq and RNA-Seq data:

	1175112317461194900 ccle-dna

	2592944257098811032 ccle-rna

An example python script
(query_ccle_reads.py [https://github.com/isb-cgc/examples-Python/blob/master/python/query_ccle_reads.py])
which queries these datasets can be found in our github repo.

You can also explore the Genomics API interactively on the Google APIs Explorer
here [https://developers.google.com/apis-explorer/#search/genomics/genomics/v1/].
For example you can try out the genomics.datasets.get API call using one of the two dataset
identifiers listed above like
this [https://developers.google.com/apis-explorer/#search/genomics/genomics/v1/genomics.datasets.get?datasetId=1175112317461194900&_h=1&] (which you can Execute without OAuth since the dataset is open-access).
Some of the API calls require several properties to be specified in the “request body” – for example
you can try the
genomics.reads.search [https://developers.google.com/apis-explorer/#search/genomics/genomics/v1/genomics.reads.search?_h=1&resource=%257B%250A++%2522readGroupSetIds%2522%253A+%250A++%255B%2522CJKPhaq1GhDg3NH1jJbu6JcB%2522%250A++%255D%252C%250A++%2522referenceName%2522%253A+%25227%2522%252C%250A++%2522start%2522%253A+%2522140453133%2522%252C%250A++%2522end%2522%253A+%2522140453137%2522%250A%257D&]
API call with the following information in the request body:

{
 "readGroupSetIds": ["CJKPhaq1GhDg3NH1jJbu6JcB"],
 "referenceName": "7",
 "start": "140453133",
 "end": "140453137",
}

The APIs Explorer allows you to try out any of the Google APIs,
with interactive prompts to help you construct the request body with the parameters.
Once you click on either the “Authorize and Execute” or the “Execute without OAuth”
buttons, you will see the explict form of the https request, and the JSON response
as soon as it is received.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Reference Data

ISB-CGC Hosted Reference Data

In order to facilitate working with the TCGA data tables that the ISB-CGC is hosting in BigQuery, additional
reference data tables have also been created, others are hosted by Google Genomics,
and suggestions for more are welcome at feedback@isb-cgc.org.

Genome Reference Data

Reference data that describes or annotates the human (or other) genome(s) is described in this section.
Reference data hosted by the ISB-CGC in BigQuery tables are available in the isb-cgc:genome_reference
dataset [https://bigquery.cloud.google.com/dataset/isb-cgc:genome_reference]. Tables based on
gene-sets such as Ensembl and GENCODE can be used to find the genomic coordinates and identifiers
for genes of interest, in order to perform queries that join tables with gene-symbol based data
to tables with genomic-coordinate based data or tables that use other gene identifiers, for example.

For additional details about each of these tables, please use the BigQuery web UI [https://bigquery.cloud.google.com]
to access each of these tables and look at the information on the Details page. (Look for the Details button
between the Schema and Preview buttons, beneath the table name.)

	
	Ensembl

	
	GRCh37 : Release 75, the final build of the Ensembl [http://uswest.ensembl.org/index.html] gene-set mapped to GRCh37

	GRCh38 : Release 87, the most recent Ensembl [http://uswest.ensembl.org/index.html] gene-set mapped to GRCh38

	
	GENCODE

	
	GRCh37 : Release 19, the final build of the GENCODE [https://www.gencodegenes.org/releases/] gene-set mapped to GRCH37

	GRCh38 : Releases 22, 23, and 24 from GENCODE [https://www.gencodegenes.org/releases/] are all available (because the TCGA data has been reprocessed by at least one center using each of these three different releases)

	Gene Ontology Consortium : Tables based on GO [http://www.geneontology.org/] annotations and the GO [http://www.geneontology.org/] ontology.

	Kaviar : The latest hg19- and hg38-based Kaviar [http://db.systemsbiology.net/kaviar/] databases are available. Kaviar [http://db.systemsbiology.net/kaviar/] is a compilation of SNVs, indels, and complex variants observed in humans, designed to facilitate testing for the novelty and frequency of observed variants.

	liftOver_hg19_to_hg38 : This table provides a mapping of each hg19 position to the corresponding position in hg38, and can be used to perform a liftOver [https://genome.ucsc.edu/cgi-bin/hgLiftOver] operation in BigQuery

	
	miRBase

	
	GRCh37 : The human portion of version 20 of the miRBase [http://www.mirbase.org/] database; including genomic coordinates for human microRNAs.

	GRCh38 : The human portion of version 21 of the miRBase [http://www.mirbase.org/] database; including genomic coordinates for human microRNAs.

	miRTarBase The recently updated miRTarBase [http://nar.oxfordjournals.org/content/early/2015/11/19/nar.gkv1258.long] database (release 6.1)

	
	Reactome

	
	Ensembl2Reactome

	miRBase2Reactome

Platform Reference Data

Some reference data is necessary in order to work with data generated by specific platforms such as the
Illumina DNA Methylation array, or the Affymetrix Genome-Wide Human SNP Array 6.0. This section will
provide links to existing sources of information elsewhere on the web, or will describe additional resources
that are hosted by the ISB-CGC. If there are additional platform reference sources that you would like
to see hosted in BigQuery tables, please let us know at feedback@isb-cgc.org.

	
	DNA Methylation Platform

	
	Most of the DNA Methylation data produced by the TCGA project was obtained using the Illumina Infinium HumanMethylation450 (aka 450k) BeadChip array. Some of the earlier tumor types were assayed on the older, 27k array.

	Although additional details can be found at the Illumina webpage, we have uploaded the platform annotation information into the BigQuery table isb-cgc:platform_reference.methylation_annotation

	Each CpG locus is uniquely identified as described in this technical note [http://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_cpg_loci_identification.pdf] and this unique identifier can be used to look up and cross-reference data between the TCGA DNA methylation data table and the platform annotation table.

	The original Illumina-provided CpG coordinates have been “lifted over” from hg19 to hg38

	Genome-Wide SNP Array
- The technical documentation for the Affymetrix Genome-Wide Human SNP Array 6.0 array can be found here [http://www.affymetrix.com/catalog/131533/AFFY/Genome-Wide+Human+SNP+Array+6.0#1_3]

Other Reference Data Sources

In collaboration with the Wellcome Trust Sanger Institute, the ISB-CGC is hosting the
COSMIC database [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/COSMIC.html].

Google Genomics maintains a list of
publicly available datasets [http://googlegenomics.readthedocs.org/en/latest/use_cases/discover_public_data/index.html],
including Reference Genomes,
the Illumina Platinum Genomes, information about the Tute Genomics Annotation table, etc.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Data Releases and Future Plans

Release Notes

	February 20, 2017: in collaboration with the Sanger Institute, the COSMIC database [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/COSMIC.html] is now available in BigQuery (registered users only)

	February 5, 2017: genomic coordinates (in GFF3 format) for human microRNAs added for miRBase v20 and v21 to the isb-cgc:genome_reference BigQuery dataset

	January 30, 2017: the final, unified “MC3” TCGA somatic mutations call set is available in the BigQuery isb-cgc:hg19_data_previews dataset (also available on Synapse [https://www.synapse.org/#!Synapse:syn7214402/wiki/405297])

	January 10, 2017: miRBase_v20 table added to the isb-cgc:genome_reference BigQuery dataset

	January 4, 2017: Ensembl gene-set releases 75 (GRCh37) and 87 (GRCh38) are now also available in the isb-cgc:genome_reference BigQuery dataset.

	November 16, 2016: TCGA proteomics data from the CPTAC [https://cptac-data-portal.georgetown.edu/cptacPublic/] (Phase II) is now available in Google Cloud Storage [https://console.cloud.google.com/storage/browser/isb-cgc-open/CPTAC/Phase_II]

	November 14, 2016: TCGA radiology and tissue slide images are now available in Google Cloud Storage! This includes radiology images (DICOM files) from the Cancer Imaging Archive [http://www.cancerimagingarchive.net/] (TCIA) and tissue slide images from the NCI-GDC data portal [https://gdc-portal.nci.nih.gov/legacy-archive/search/f?filters=%7B%22op%22:%22and%22,%22content%22:%5B%7B%22op%22:%22in%22,%22content%22:%7B%22field%22:%22files.data_type%22,%22value%22:%5B%22Tissue%20slide%20image%22%5D%7D%7D%5D%7D] (SVS files).

	September 10, 2016: GENCODE versions 19, 22, 23, and 24 are all now available in the isb-cgc:genome_reference BigQuery dataset, with an updated and more complete schema – note also that the naming convention is now GENCODE_v19 rather than GENCODE_r19; also that v19 is the last version based on hg19/GRCh37, and all subsequent versions are based on hg38/GRCh38

	August 31, 2016: a table based on the latest liftOver hg19-to-hg38 chain files is available in the isb-cgc:tcga_genome_reference BigQuery dataset

	August 26, 2016: a set of tables based on running Picard over ~67,000 TCGA bam files in GCS have been added to the isb-cgc:tcga_seq_metadata BigQuery dataset: information contained in these tables includes bam-index stats, insert-size metrics, quality-distribution metrics, and quality-yield metrics – these tables can be used in conjunction with the FastQC-based tables to look for bam and/or fastq data files that meet your analysis criteria

	August 21, 2016: new miRBase_v21 table added to the isb-cgc:genome_reference BigQuery dataset

	August 20, 2016: updated hg19 and hg38 Kaviar [http://db.systemsbiology.net/kaviar/] tables added to the isb-cgc:genome_reference BigQuery dataset

	August 17, 2016: new isb-cgc:GDC_metadata BigQuery dataset containing metadata for both legacy and current files hosted at the NCI-GDC [https://gdc-portal.nci.nih.gov/].

	July 28, 2016: new isb-cgc:tcga_201607_beta BigQuery dataset based on the final TCGA data upload from the DCC. This dataset largely mirrors the previous isb-cgc:tcga_20510_alpha dataset and is now also supporting the ISB-CGC Web-App. The curated TCGA cohort tables in the isb-cgc:tcga_cohorts BigQuery dataset have also been updated.

	June 24, 2016: an updated listing of all ISB-CGC hosted data in Google Cloud Storage (GCS) is now available in the GCS_listing_24jun2016 table in the isb-cgc:tcga_seq_metadata dataset in BigQuery, in addition the CGHub_Manifest_24jun2016 table contains the final CGHub Manifest prior to the transition of all data to the Genomic Data Commons [https://gdc-portal.nci.nih.gov/].

	June 18, 2016: new GENCODE_r24 table added to the isb-cgc:genome_reference BigQuery dataset

	May 13, 2016: new NCBI_Viral_Annotations_Taxid10239 table added to the isb-cgc:genome_reference BigQuery dataset

	May 9, 2016: new Ensembl2Reactome and miRBase2Reactome tables added to the isb-cgc:genome_reference BigQuery dataset

	
	May 3, 2016: new isb-cgc:tcga_seq_metadata BigQuery dataset contains metadata and FastQC metrics for thousands of TCGA DNA-seq and RNA-seq data files:

	
	CGHub_Manifest table contains metadata for all TCGA files at CGHub as of April 27th, 2016

	GCS_listing_27apr2016 table contains metadata for all TCGA files hosted by ISB-CGC in GCS

	RNAseq_FastQC table contains metrics derived from FastQC runs on the RNAseq data files, including urls to the FastQC html reports that you can cut and paste directly into your browser

	WXS_FastQC table contains metrics derived from FastQC runs on the exome DNAseq data files

	April 28, 2016: GO_Ontology and GO_Annotations tables added to the isb-cgc:genome_reference BigQuery dataset

	March 14, 2016: with the release of our Web-App, controlled-data is now accessible (programmatically) to users who have previously obtained dbGaP approval for TCGA data and go through the NIH authentication process built-in to the Web-App.

	February 26, 2016: new CCLE dataset in BigQuery isb-cgc:ccle_201602_alpha includes sample metadata, mutation calls, copy-number segments, and expression data (metadata includes full cloud-storage-path for world-readable BAM and SNP CEL files, and Genomics dataset- and readgroupset-ids for sequence data imported into Google Genomics)

	February 22, 2016: Kaviar database now available in the isb-cgc:genome_reference BigQuery dataset

	February 19, 2016: CCLE RNAseq and DNAseq bam files imported into Google Genomics

	January 10, 2016: GENCODE_r19 and miRBase_v20 tables added to the isb-cgc:genome_reference BigQuery dataset

	December 26, 2015: public release of new isb-cgc:genome_reference BigQuery dataset: the first table is based on the just-published miRTarBase release 6.1

	December 12, 2015: curated TCGA cohort lists available in isb-cgc:tcga_cohorts BigQuery dataset

	November 16, 2015: initial upload of data from CGHub into Google Cloud Storage (GCS) complete (not publicly released)

	
	November 2, 2015: first public release of TCGA open-access data in BigQuery tables

	
	isb-cgc:tcga_201510_alpha dataset contains updated set of BigQuery tables, based on data available at the TCGA DCC as of October 2015

	includes Annotations table with information about redacted samples, etc

	isb-cgc:platform_reference contains annotation information for the Illumina DNA Methylation platform.

	October 4, 2015: complete data upload from TCGA DCC, including controlled-access data

	
	September 21, 2015: draft set of BigQuery tables (not publicly released)

	
	isb-cgc:tcga_201507_alpha dataset containing clinical, biospecimen, somatic mutation calls and Level-3 TCGA data available at the TCGA DCC as of July 2015

Future Plans

We expect that our future plans will continually evolve based on user feedback, research priorities,
and the dynamic nature of the Google Cloud Platform.
Tell us what is important to you at feedback@isb-cgc.org

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

ISB-CGC Web Interface

The documentation contained in this section is for version 1.0 of the ISB-CGC web interface [https://isb-cgc.appspot.com/].

Over time we will be updating and enhancing this web interface based on your feedback.
We welcome your ideas and needs. Please use this link [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback] to provide them.

	Overview

	Accessing Controlled Data

	Menu Bar

	Workbooks

	Genes and miRNAs Favorites List

	Variable Favorites

	Saved Cohorts

	Program Data Upload

	Graphing User Data

	Integrative Genomics Viewer (IGV)

	Viewing and using cohorts in the Webapp and API

	Web-App Release Notes

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Overview

The ISB-CGC web application functionality is accessed through a Google account identity (freely available with a new account [https://accounts.google.com/signupwithoutgmail?hl=en] or by linking to an existing email account [https://accounts.google.com/SignUpWithoutGmail]). If you have not logged into the ISB-CGC application you will be presented with this page:

[image: ../../_images/startscreen-nologin.png]
You login through the “Sign In” link at the upper right of the initial page (label “A” in the image above).
Also on this page are links to project documentation (B), our public GitHub repository (C),
a link to provide feedback (D), a link to submit an issue to Github (E), a link to more information about ISB-CGC (F), and our required “Warning Notice” (G) indicating that this is a U.S. Government Sponsored Website and by using it you are accepting the policies associated with its use.

Upon signing in with a Google account identity, you will be presented with the following page:

[image: ../../_images/startscreen-login.png]
This is your personal “Dashboard” where your Analyses, Gene and miRNA Lists, Variable Lists, Cohorts, and Saved Programs are readily accessible. Additional documentation describing how to use each component of this user interface are provided in the individual subsections of this documentation.

Multiple Sample Analyses can be grouped into Workbooks (and saved for later use, editing, and sharing).
Workbooks are used to group together multiple related analyses, and can be used for sharing groups of
analysis results with specific groups of people. For example, you may use one Workbook for an on-going study of gene
mutations and pathways involved in Head and Neck Cancer (with one research group you are part of),
and use a different Workbook for another on-going study with a different set of collaborators in which you are
investigating survival-time after diagnosis for patients with different types of lung cancers.
Think of workbooks as containers in which you can create and group related analyses, and which you can share
with specific colleagues.

IF YOUR SCREEN LOOKS LIKE THIS (how do I get to the main screen?):
If your screen looks like the image below (I am logged in (A in image) but I can’t see my analyses pages (“Your Dashboard” - image above))
that is because some browsers save your Google Login as a cookie, and automatically sign you in.
To get to “Your Dashboard” click on the “ISB-CGC” icon in the upper left (B in the image).
This will always take you to the main analysis dashboard screen.

[image: ../../_images/IfYourScreenLooksLikeThis.png]
Breadcrumbs show you where you are in the Web Interface as you move from one section to another (figure below).
These are live links, and can be used to rapidly navigate from one section of the interface to another.

[image: ../../_images/Breadcrumbs.png]
The data that is being manipulated with the Web Application is the same data that is available through the programmatic APIs.
Details describing how to access these data are provided in detail in specific documentation sections elsewhere in the documentation.

The Web Application was optimized for use with the Google Chrome web browser. Most of the functionality should work with recent versions
of other web browsers (e.g. Firefox, Safari, Internet Explorer). If you find an issue and you are not using Chrome, please
try using Chrome to see if the issue appears to be browser-specific.

Also please note the system is set in Pacific time, so if you see some inconsistencies with the time in the workbooks or cohorts you generated in the last updated section it could be due to this fact.

If you encounter issues or have questions, please use our feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback] forum.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Accessing Controlled Data

Accesssing controlled data is done in two different manners, depending if you are doing it through interactive computing (eg the Web App or R Studio), or programmatically (eg a program running from a Google Virtual Machine Compute Engine you have started). In some cases you will be using your personal credentials while in other cases a “service account” will be acting on your behalf, using its own credentials. Below the methods are described. Please note, you can use both methods at the same time, they are not mutually exclusive.

Interactive Access to Controlled Data

Before you can access any controlled-data hosted by the ISB-CGC,
you must first associate (or “link”) your Google identity (which you use to sign in to the ISB-CGC Web App and
access the Google Cloud) with a valid NIH login associated with a dbGaP data-access request
(either an eRA account ID or an NIH account User ID). This is done through the Web App: you will
first be redirected to an NIH login page, and once you have successfully authenticated,
ISB-CGC will store an association between your NIH identity and your Google identity.
(Note that this should be a one-to-one association.)

Once you have authenticated, ISB-CGC will check which dataset(s) you have been authorized
(by dbGaP) to access. ISB-CGC obtains an updated whitelist for each of the hosted datasets from
dbGaP every day. If you have just recently been granted access by dbGaP, there may be a 24 hour
delay before you will be able to request access to these data on ISB-CGC.

Visit electronic Research Administration (eRA) [http://era.nih.gov] for more information on
registering for a NIH eRA account. NIH staff may utilize their NIH log-in.
(For additional instructions, please refer to Data Access Request Instructions [http://www.genome.gov/20019654],
dbGap Data Access Request Portal [http://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login],
and Understanding Data Security [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/sections/data/data2/TCGA_Data_Security.html]).

Once you have authenticated to NIH via the Web App, and your dbGaP authorization has been verified, the
Google identity associated with your account will have access to the controlled-data for 24 hours.

For more information on applying for dbGaP authorization to access controlled data, please see our
Frequently Asked Questions (FAQ)
page [http://http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/sections/FAQ.html?]
or the “How to” Apply for Controlled Access Data Video [http://www.youtube.com/watch?v=-3tUBeKbP5c].

Linking your NIH and Google identities

To link your NIH identity with your Google identity (ie the Google account you used to login to the ISB-CGC system),
select the “persona” icon next to your login name (A in the image below) after you have signed in to the ISB-CGC Web App.

[image: ../../_images/personaeicon-NIHLoginAssoc.png]
You will then see the following page:

[image: ../../_images/NIHAssociationPage.png]
Now you need to associate your Google identity with your NIH identity. (Your NIH identity is the one associated
with your dbGaP application and authorization to work with controlled data.)
To do this, select the “Associate with eRA Commons Account” link (highlighted in diagram above, and labeled A).
You will then be re-directed to an NIH login page to be authenticated by NIH:

[image: ../../_images/iTrust.png]
If you have an eRA identification, use this to sign in through panel A (see example above).
If you have an NIH PIV card, use that to sign in through panel B on this page (see above).
Once you have been authenticated by NIH, and your NIH identity has been verified to be on
the current dbGaP whitelist, you will have access to controlled data for 24 hours.
(To renew your access, you will need to repeat this process.)

[image: ../../_images/LogInandUnlink.png]
Please note: the ISB-CGC system will enforce a one-to-one relationship between NIH identities
and Google identites. In other words, a single NIH identity may not be used to attempt to
gain access to controlled data by multiple, different Google identities.
If you need to unlink your eRA account from your Google account (for example if you want to
change which Google identity you use to sign in to the ISB-CGC platform), you may do so by
selecting “Unlink <GoogleID> from the NIH username <eRA Commons ID>” (link B in the screen above).

In the unusual instance that your NIH identity has been registered with another Google identity
(eg with another Google identity you own), you will see the screen below:

[image: ../../_images/eRAlinkedtoAnotherGoogle.png]
If this happens, please sign in with that other account and “unlink” your eRA from that account i
(see description above). You will then be able to register your eRA account with the desired Google identity.
If you are not able to resolve the issue, contact us at feedback@isb-cgc.org and we will help you resolve it.

To end your Web App session, just “Sign Out” by using the pull-down below your name
(see image below, A). After you sign out from the ISB-CGC Web App, your Google identity may
still be signed in to your browser, so you may want to also sign out of the browser.

[image: ../../_images/SignOut.png]

Extending Your Access by 24 hours

Once you have received permission to view controlled access data, your user login page will look
like the screenshot below. If you need to extend your access to controlled data for another 24
hours from now (eg if you have a compute job which is using these Google credientials to access
controlled data and it is still running), select the link “Extend controlled access
period to 24 hours from now” (red box on figure below).
Your time of access will be extended to 24 hours from the time you push the link.

[image: ../../_images/24hrExtension.png]

Accessing Controlled Data from a GCE VM

This section only applies to ISB-CGC users with access to a Google Cloud Platform (GCP)
project [https://cloud.google.com/resource-manager/docs/creating-managing-projects].
GCP projects are automatically configured with a “Compute Engine default service account”
which you can find on the IAM & Admin page [https://console.cloud.google.com/iam-admin/iam/project] of the
Cloud Console [https://console.cloud.google.com/home/dashboard]. You can create additional
service accounts for special purposes, but most users will be able to just use this one
default service account.

When running on a Google Compute Engine (GCE) VM (virtual machine), a “service account” associated with
your Google Cloud Project (GCP) is generally acting on your behalf and those are the credentials being
used rather than your personal credentials. (If you want to learn more about service accounts, please
refer to the Google documentation [https://cloud.google.com/iam/docs/service-accounts].)

In order for this service account to access controlled data, you must register it with ISB-CGC.
Once this process has completed successfully, this service account will be able to access controlled
data for up to 7 days.

NOTES:

	to allow flexibility while working with different research teams and different processes, you can have many GCPs registered with ISB-CGC, as well as many service accounts registered per GCP

	if the service account (ie any program running on a VM using the service account’s credentials) tries to access controlled data after the 7 day expiration, it will get an Access Denied error; to prevent this from causing problems with long-running jobs, you can extend access by another 7 days (see below);

Requirements for Registering a Google Cloud Project Service Account

To be able to register your GCP Project and at least one service account to access controlled data the following must all be true:

	you must be an owner of the GCP project (because you will need to add an ISB-CGC service account as a new projet member)

	at any time, ALL members of the project MUST be authorized to use the data set (ie be a registered dbGaP “PI” or “downloader”) (see dbGap Data Access Request Portal [http://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login], and Understanding Data Security [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/sections/data/data2/TCGA_Data_Security.html] for more details).

	all members of the project have signed in to the ISB-CGC Web App at least once

	all members of the project have authenticated via the NIH login page and thereby linked their NIH identity to their Google identity

If ANY of these requirements are not met, your GCP and ANY associated service accounts will not be able to access controlled data. An automated email will be sent to the GCP project owner(s) if data access is revoked.

Registering your Google Cloud Project Service Account

To register your GCP and its Service Account with ISB-CGC, select the “persona” icon next to your login name (see first image above), which takes you to the following page:

[image: ../../_images/RegisteredGCPs.png]
Select the “Register a Google Cloud Project” link. That takes you to the following page:

[image: ../../_images/RegisterAGCPForm.png]
Please fill out the form following the instructions that are provided. You must enter your GCP ID and enable the isb-cgc service account as an editor in your project to move on to the next step. Once you have completed these steps you will be presented at the bottom of the same page a listing of the members of your GCP you registering (see screenshot below):

[image: ../../_images/GCPMembers.png]
Pushing the “Register” button will take you to the next screen:

[image: ../../_images/0007projectregistered.PNG]
Select “Register Service Account” from the drop down menu on the left of the GCP you want to add a service account to. You will be requested to enter your service account ID (see screenshot below). Addtionally, select the “Yes” checkbox indicating that you will be using the account to access controlled data and select the Controlled Dataset(s) you plan to access.

[image: ../../_images/RegisterAServiceAccountFirstScreen.png]
Once you click the “Button” at the bottom of the page, you will be presented with a list of the users of the GCP project, if they have registered with ISB-CGC through the Web Application, if they have an eRA Commons ID (or NIH ID) registered with ISB-CGC, and if they are authorized to use the selected controlled access dataset (see screenshot below). All columns MUST have a green check-mark in them for each user before your service account can be registered.

[image: ../../_images/ServiceAcctRegTable.png]
If all the requirements for registering a service account are met, the account will be registered. If not, the service account will only be registered for Open Datasets. The final screen below shows the final registered data set (shown by selecting the drop-down menu beside the service account count highlighted in red).

[image: ../../_images/ServiceAcctRegSuccess.PNG]

Managing your Google Cloud Project(s) and Service Account(s)

Once your GCP(s) and Service Account(s) are registered, you can add or remove additional service accounts by following the instructions below.
You can also extend the use of a service account for another 7 days, or reauthorize a service account after you have corrected errors that
previously caused it to have its permissions revoked.

Adding additional Google Cloud Projects

To add additional Google Cloud Projects (GCPs) that you own to be able run programs programmatically
select the “+ Register New Google Cloud Project” button from the “Registered Google Cloud Projects” page (see screenshot below).

[image: ../../_images/RegisterAnotherGCP.PNG]

Deleting Google Cloud Projects

To delete a GCP that is registed, select the “Unregister Project” button from the dropdown menu beside the project your are removing on the “Registered Google Cloud Projects” page (see screenshot below).

[image: ../../_images/UnregisterAGCP.PNG]

Adding additional service accounts to a given Google Cloud Project

To add additional service accounts to a given GCP reselect the “Register Service Account” from the dropdown menu beside the project that has the service account (see screenshot below).

[image: ../../_images/0007projectregistered.PNG]

Deleting Service Accounts from Google Cloud Projects

To delete a service account from an GCP (not allowing it to be used to programmatically access controlled data), push the “trashcan” icon beside the service account (see screenshot below).

[image: ../../_images/DeleteServiceAccount.PNG]

Extending Your Service Account Access by 7 Days

Once you have registered a Service Account, you have 7 days before the access is automatically revoked. To extend the service account access another 7 days (eg if your program is still running), select the “refresh” icon beside the service account (see screenshot below).

[image: ../../_images/RefreshServiceAccount.PNG]

Reauthorizing a Google Cloud Project(s) Service Account(s)

Your service account may have its permissions revoked (because, for example, the 7-day limit has expired, or
you have added a member to the GCP who is not authorized to use that controlled data). If permissions
were revoked because an unauthorized user was added to the project,
the Google Cloud Project owner will be sent an email specifying the Service Account, GCP Project, and user
which resulted in the access being revoked.
To reauthorize the service account 1) remedy the problem that resulted in access being denied,
and 2) select the “refresh” icon beside the service account (see screenshot below).

[image: ../../_images/RefreshServiceAccount.PNG]

Your Responsibilities

You should think about securing controlled data within the context of your GCP project in the same way
that you would think about securing controlled data that you might download to a file-server or
compute-cluster at your own institution. Your responsibilities for data protection are the same in a
cloud environment. For more information, please refer to
NIH Security Best Practices for Controlled-Access Data [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?document_name=dbgap_2b_security_procedures.pdf].

NIH has tried to provide as much information as possible for PIs, institutional signing officials (SOs) and
the IT staff who will be supporting these projects, to make sure they understand their responsibilities.”
(Ref: The Cloud, dbGaP and the NIH blog post 03.27.2015 [http://datascience.nih.gov/blog/cloud])

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Menu Bar

Clicking on the Menu icon or word in the upper-right corner of your browser window (next to your name), will insert the
blue menu bar in your current view. You can make this menu bar disappear by clicking the on the blue X or the
word Menu again.

The MENU bar is a graphical control element which contains application navigational drop downs (sub-links).
The Menu bar’s purpose is to supply quick and common links for application-specific functions / features such as:

	DASHBOARD - This link takes you to Your Dashboard main page.

	
	WORKBOOKS - Workbooks store the Analyses you create – and their related data. You can create worksheets as you explore and analyze selected underlying data (i.e. Genes and miRNAs, Variables and Cohorts – further explained later). From the “Workbook” link you can quick link to the following:

	
	Recent - Displays your created workbooks and allow quick navigation to them;

	Saved - Displays all your saved workbooks and allows you to edit, duplicate or delete the workbook;

	Create a New Workbook - Quick Link to Workbook Creation, where you can select the data source

	
	PROGRAMS - These are shortcuts to the programs you have created if you uploaded your own data.

	
	Saved Programs - Here you Can:

	Edit or delete a Saved Program

	Start a New Workbook

	Create a New Program

	Upload Program Data - Here you can:

	Create a new program for analysis. To create a new program you provide a name for program, name for your project, and attach files that meet our Data Type requirements. Please see Program Data Upload for more information on data type accepted by the ISB-CGC.

	Save or cancel a new creation

	Public Programs - Here you can:

	View the programs and project that are currently in the ISB-CGC system.

	
	ANALYSES - From here you can Create, Edit Details, Duplicate, Delete, or Share Analyses. You can use a specific analysis type to create a new workbook customized with the specific data (Genes and miRNAs, Variables, Cohorts) you have selected. The plot types that you can select from include:

	
	Bar Chart

	Histogram

	Scatter Plot

	Violin Plot

	Cubby Hole Plot

	SeqPeek

	Browse All Analyses

	GENES & miRNA - From this Menu selection you can Manage Gene and miRNA Favorites, Create Gene and miRNA Favorite(s) or Select Genes and miRNAs for a New Workbook.

For additional details, see Read the Docs - Gene & miRNA Favorites. Each of these categories provide a quick link to additional application-specific functions / features such as:

	Manage Gene & miRNA Favorites - Here you can:

	Edit or Delete a Saved Gene and miRNA Favorite(s)

	Start a New Workbook

	Create a New Gene and miRNA Favorites

	Create Gene & miRNA Favorite - Here you can:

	Create a Gene & miRNA Favorite for Analysis. To Create a New Gene and miRNA Favorite - You provide a name and select the Gene and/or miRNA. You can upload a stored Gene and miRNA List or type in Gene name or miRNA (Note: This will auto fill as you type in Gene name or miRNA name). To aid in Gene selection, you can access the HGNC portal (Hugo Gene Nomenclature Committee) via the “View Gene Identifiers” link under this Menu selection. Also, to aid in miRNA selection, you can access the miRBASE via the “View miRNA Identifier” link next to the View Gene Identifiers link.

	Save or Cancel a new creation.

	Select Genes & miRNA for a New Workbook - This sub-menu has two features:

	Apply to New Analysis - Select a Favorite(s) Gene and miRNA from the list shown of stored Favorites to Analyze

	Add (+) Apply to New Analysis - Basically navigates back to the Create Gene and miRNA Favorite (See description above)

	
	VARIABLES - This sub-menu allows you to Manage Variables Favorite or Create New Favorite (see descriptions below) For additional details, see Read the Docs - Variable Favorites.

	
	Manage Favorite Variable(s) Lists - Shows your saved Variables as Favorites:

	Edit

	Delete

	Start New Workbook - (Create a New Workbook using the selected Favorite Variables)

	Create Favorite Variable(s) List - Here you “Name” your new favorite and select variables from four (4) available data sources to incorporate in your analysis-

	Common Variables

	Favorite(s) Saved

	Programs (Previously Uploaded and Saved)

	Select Variables for a New Workbook - This sub-menu has two features:

	Apply to New Worksheet - Select a Favorite(s) variables from the list shown of stored Favorites to Analyze

	Add (+) Apply New Variable List - Basically navigates back to the Create Variables Favorite (See description above)

	COHORTS - Here you can Manage Saved Cohorts, select Public Cohorts and Select Cohorts for a New Workbook or Create your First Cohort if it’s empty. For additional details, see Read the Docs - Cohort Favorites.

	Manage Saved Cohorts - There are two tabs here

	
	Saved Cohorts - Displays previously created cohorts which can be selected. If not cohorts exist, you can create your first Cohort here by selecting the “Create Your First Cohort” link displayed and selecting Donors and Data Types. Within Saved Cohorts you can:

	
	Create a “New Workbook” from a saved Cohort

	Delete a Saved Cohort

	Set Operations (i.e., Union, Intersection or complement) from a Base or Subtracted Cohort.

	
	Public Cohorts - Displays any public cohorts which can be selected.

	
	Create a “New Workbook” from a saved Public Cohort

	Set Operations (i.e., Union, Intersection or complement) from a Base or Subtracted Cohort.

	Public Cohorts - This is a quick link performing the same functions described in the respective tabs of Saved Cohorts above.

	Select Cohorts for a New Workbook - This is a quick link performing the same functions described in the respective tabs of Saved Cohorts and Public Cohorts above.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Workbooks

	Workbooks store the Analyses you create – and their related data. Basically, the worksheets you create to conduct analysis based on the source data selected (i.e. Genes and miRNAs, Variables and Cohorts). Workbooks can be used to:

	
	Group together multiple related analyses,

	Share analysis results with specific groups of people,

For example, you can create a workbook (i.e., Disease A) which consists of identifying gene mutations and pathways involved in Head and Neck Cancer (and share it with research Group A).

And create another workbook (i.e., Disease B) with a different group of researchers (Group B) investigating the average time after diagnosis of death for different lung cancers. Think of workbooks as virtual “excel spreadsheets” that various related analyses can be created in individual Worksheets (“Tabs” within the spreadsheet) and grouped together in one Workbook (the overall spreadsheet).

	Additionally, you can:

	
	Save a workbook for later use, or

	Edit an existing workbook.

Creating and Saving a Workbook

From your dashboard, under Sample Analysis you will find the “Saved Workbooks” panel. This panel displays any previously created and save workbooks and allows you to “Create a New Workbook”. If you do not have any saved workbooks you will see “Saved Workbooks (0)”.

To create a workbook from Your Dashboard, click on the “Create a New Workbook” link in the “Saved Workbooks” panel. This will take you to the workbook creation page.

Note: If you wish to use your own data in graphing, please review the documentations on how to upload your own data and on how to graph your own data. Using your own data uses a slightly different approach than is described here.

	From the Workbook creation panel you will first select one of six analysis types (i.e., Bar chart, Histogram, Scatter Plot, Violin Plot, Cubby Hole Plot or SeqPeek).

	Analysis Type Description

	Bar Chart - This chart is used to plot a single categorical feature for one or more cohorts. It generates vertical lines to represent the type of data being used. The X axis shows categorical information being used while the other y axis, displays categorical data chosen in the edit analysis settings.

	Histogram - This chart is used to plot a single numerical feature for one or more cohorts. It generates vertical lines to represent the type of data being used. The X axis shows numerical information being used while the other y axis, displays numerical data chosen in the edit analysis settings.

	Scatter Plot - This chart is used to plot two numerical features (x & y axis) for one or more cohorts. Can also color code points by a single categorical feature.

	Violin Plot - This chart is used to plot a categorical feature on the x-axis versus a numerical feature on the y-axis. Points in the plot can be colored by another categorical feature.

	Cubby Hole Plot - This chart is used to plot two categorical features. Boxes are colored by their related p-values.

	SeqPeek - This visualization shows where somatic mutations have been observed on a linear representation of a specific protein. Each horizontal strip represents the protein, with data from different tumor types (aka cohorts or studies) shown stacked one on top of the other.

	Browse All Analyses - This will direct you to a visual sample of the different analysis types along with a brief description of how to generate each type.

A researcher now has the option to make the axis logarithmic if the plot can display continuous numerical data for eg. mRNA expression levels.

Note: For Violin Plot and Scatter Plot you can select multiple cohorts as your Color By Feature. This will cause the Legend to list all the cohorts that the sample is associated to. Please be aware you’ll end up with lots of permutations if you have lots of samples that belong to many different cohorts.

	You will then select Genes and miRNAs or Variables (or, optionally both)

	Genes and miRNAs - This will display previously created “Gene and miRNA Favorites” which can be “Applied to Analysis” (see Gene and miRNA Favorites for details) or you can apply / create a “New Gene and miRNA List”).

You begin by naming the data set (Gene Type or Project Specific); the Gene and miRNA list you create here will automatically be added to your Gene and miRNA Favorites list and can be selected for additional analysis later.

Next select the Gene(s) and miRNA(s) you’re interested in (you can upload a specific list you’ve previously created/stored, select new Genes and miRNA by typing them into the input box (you will see that Genes and miRNAs will auto-display). If duplicate listings are entered they will be marked for your deletion or automatically dropped when saved. If an error or unknown item is entered it will also be flagged for your attention.

To aid in Gene selection, you can access the HGNC portal (Hugo Gene Nomenclature Committee) via the “View Gene Identifiers [http://www.genenames.org/]” link under this Menu selection. To aid in miRNA selection You can also access the miRBase portal via the “View miRNA Identifiers [http://www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa]” for readily available miRNA identifiers.

This allows you to focus on specific results or queries.

	Variables - (this will display previously created “Variable Favorites” which can be “Applied to Analysis” (see Variable Favorites for details) or you can apply / create a “New Variable List”).

You begin by naming the new Variable; the Variable you create here will automatically be added to your Variable Favorites list and can be applied to other analysis later.

	Next you can select variables from five (5) available data sources to incorporate in your Variables-

	
	TCGA - Common (22 options) and clinical search feature

	CCLE - Common (8 options) and clinical search feature

	TARGET - Common (16 options) and clinical search feature

	Favorite(s) - (Previously created variables which were Saved)

	User Data - Every program and data variable you have uploaded into system.

Then “Apply to Worksheet”

	Select your Cohort - Cohorts allow the user to create custom groupings of the samples and/or participants that can be used for further analysis.

By clicking ‘Cohorts’ or the ‘+’ symbol you will be directed to the Cohorts table where the user can either create a new cohort or choose from an existing cohorts. When creating a new cohort, after selecting your criteria you click the “Create Cohort” button. The button will become disabled (dimmed) as the Cohort builds (shown in the image below).

[image: ../../_images/Not_Dim_Dimmed.jpg]
Once completed you can proceed. The user can also add multiple Cohorts to the worksheet if desired. More information about Cohorts can be found here (link to Cohorts documentation).

	Select Edit Analysis Settings - This will trigger the Plot setting displaying the applicable x & y axis settings (i.e. Categorical or Numerical based on analysis type selected). Depending on the analysis type selected (i.e., Bar chart, Histogram, Scatter Plot, Violin Plot, Cubby Hole Plot, or SeqPeek) additional specifications may appear for selection.

Sample Workbooks

The sample workbooks (future Function) is found in the Menu bar under the Workbooks tab. This will contain guides for the user to see what is the different functionality of the workbooks are.

Sharing Workbooks

This will share the web view of workbooks with users you select by entering the users e-mail. The User will receive an e-mail message with a link to your shared workbook explaining that (you) wanted to share a workbook with (them) and that you have invited them to join.

Manipulation of Workbooks

Creating A Worksheet - By selecting the “+” next to an existing worksheet a user can create a new worksheet to create a new analysis. You can give the new worksheet an unique identifier and also give a description for the worksheet. This is ideal by allowing the user to easily have access to different graphs with the same data in the same workbook.

Worksheet Menu - The worksheet will have a section similar to the workbook menu where user can edit, duplicate or delete the worksheet. You can find the worksheet menu bar by clicking the arrow pointing down located next to the name of the worksheet that is opened.

Edit Analysis Settings - This function allows you to select new Plot Setting for selected analysis type.

Please Note: When selecting a gene or miRNA for either the x-axis or y-axis variable you be prompted with selecting a specification. If you select Gene Expression you have the option of choosing a Platform Filter and a Center Filter. If you select the Methylation specification you can select a CpG Probe Filter, a Platform Filter, a Gene Region Filter, and a CpG Island Region Filter. If you select the Copy Number specification you can choose a Value Filter. If you select the Protein specification you can selelct a Protein Filter. If you select the Mutation specification you select select a Value Filter.

Enable Sample section and Edit Analysis Settings - Enable Sample Selection(shown in the image below) allows you to select samples from displayed analysis and save that selection to a new Cohort for further drill down analysis. The Edit Analysis Settings allows you to change the variables you wish to use for your analysis(varies by which analysis you choose). Finally, if you select miRNA you can select specification miRNA Expression, you will be prompted to select a feature.

[image: ../../_images/edit_analysis_finger.PNG]
Edit Details - This function allows the user to edit the name of the worksheet and also give a brief description on the worksheet being used for analysis.

Duplicate - This function allows the user to create a duplicate worksheet in the workbook for further analysis and comparison.

Delete - This function will only appear when you are working with multiple worksheets. This will permanently delete the worksheet from the workbook.

Comments Section

Any user who owns or has had a cohort shared with them can comment on it. To open comments, use the comments button at the top right and select “Comments”. A sidebar will appear on the right side and any previously created comments will be shown.

On the bottom of the comments sidebar, you can create a new comment and save it. It should appear at the bottom of the list of comments.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Genes and miRNAs Favorites List

PURPOSE

This feature allows you to create and manage Gene and miRNA lists for use in subsequent analyses.
From the Menu - Genes and miRNA selection, you can Manage Gene and miRNA Favorite(s), Create Gene and miRNA Favorite(s) or Select Genes and miRNAs for a New Workbook analysis.

Creating A Gene and miRNA List Favorite

	To create a new Gene and miRNA Favorite -

	
	Begin by naming your new “Favorites list”; you can create many Favorites and use them later when working with workbooks.

	Next specify the Gene(s) and/or miRNA(s) to populate this list: you can upload a pre-existing list, or enter Genes and miRNAs one at a time by typing them into the input box (with auto-completion support).

If duplicate symbols are entered they will be marked for your deletion or automatically dropped when the list is saved.
If an unrecognized item is entered it will also be flagged for your attention.
To aid in Gene selection, you can access the HGNC portal (Hugo Gene Nomenclature Committee) via the
View Gene Identifiers [http://www.genenames.org/] link provided under this Menu selection.
To also aid in miRNA selection, you can access the miRBase via the View miRNA Identifiers [http://www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa] link provided next to the View Gene Identifier link mentioned above.

	Terminology Used for Genes

	
	The National Human Genome Research Institute (NHGRI) [http://www.genome.gov/glossary/index.cfm] created the Talking Glossary of Genetic Terms to help everyone understand the terms and concepts used in genetic research. In addition to definitions, specialists in the field of genetics share their descriptions of terms, and many terms include images, animation and links to related terms.

	Terminology Used for miRNA

	
	The miRBase [http://www.mirbase.org/index.shtml] created a microRNA database center to enable researchers to understand the published miRNA sequences and annotations.

Resources

	A variety of on-line resources exist that may be useful for understanding and working with Gene identifiers, for example:

	
	Hugo Gene Nomenclature Committee (HGCN) [http://www.genenames.org] or

	National Center for Biotechnology Information (NCBI) [http://www.ncbi.nlm.nih.gov]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Variable Favorites

A variable Favorites list is a way of creating custom groupings of the samples and/or participants that you are interested in analyzing further. For example, you can create a variable favorites list that span across multiple projects, only contain samples for which certain types of data are available, or focus on specific phenotypic characteristics.

Creating and Saving a Variable Favorites List

To create a variable list from the User Dashboard, click on the “Create Variable Favorite” link where you will be directed to the Create Variable Favorite Page.

Variable Favorites List Creation page

Using the provided list of filters on the left hand side, you can select the attributes and features
that you are interested in.

By clicking on a program, the field will expand and provide you with additional filtering options in the Data Types section.
For example, when to select the TCGA tab you see a common filters section. The common filters section is shared across programs, so if the common filter is selected in one program it will be selected for all programs.

Variable Favorites Filter

Common Filter List by Program

	TCGA Common Filter
List

	CCLE Common Filter List

	TARGET Common
Filter List

	Year of Diagnosis

	Gender

	WBC at
Diagnosis

	Residual Tumor

	Disease Code

	Year of Diagnosis

	Neoplasm Histologic
Grade

	Sample Type

	Event Free Survival

	Disease Code

	Project Short Name

	Days to Last Follow
Up

	Age at Diagnosis

	Site Primary

	Gender

	Vital Status

	Histology

	Days to Last Known
Alive

	Ethnicity

	Histological SubType

	Sample Type

	Person Neoplasm
Cancer Status

	Program

	Project Short Name

	Sample Type

	
	Disease Code

	Menopause Status

	
	Race

	Histological Type

	
	Days to Birth

	BMI (Body Mass Index)

	
	Age at Diagnosis

	Tobacco Smoking
History

	
	Vital Status

	Pathologic Stage

	
	Days to Death

	HPV Status

	
	Program

	Program

	
	Ethnicity

	Gender

	
	

	Days to Last
Known Alive

	
	

	Preservation Method

	
	

	Project Short Name

	
	

	Race

	
	

	Tumor Tissue Site

	
	

Favorites Filter

This filter allows the user to add selected variables from existing variable Favorite list.

Clinical Filter Feature Search

This filter allows the user to search by any clinical feature in a given program that is present in the most recent data upload for that program.

User Uploaded Programs Filter

This filter allows you to select by filters that you have uploaded using the upload data functionality. It’s seperated by projects within your program, a drop down list will display the features that are assocaited.

Selected Filters Panel

This is where the filters you have selected are shown on the right panel for clear verification of what has been selected for analysis. Clicking “Clear All” will remove all selected filters.

Editing a Variable Favorites List

Details of variables favorites list edit page

Main Menu

	Edit Button: Selecting this menu item make the filters panel appear. And filters selected will be additive to any filters that have already been selected. To return to the previous view, you much either save any selected filters, or choose to cancel adding any new filters.

	Delete Button: Selecting this button will delete you variable favorites list.

	Apply New Workbook button: Selecting this button will create a new workbook with the variable favorites list for analysis.

Selected Filters Panel

This panel displays any filters that have been used on the variable list or any of its ancestors. These cannot be modified and any additional filters applied to the cohorts will be deleted.

Deleting a Variable Favorites List

From the dashboard:
Click the arrow next to the variable favorites list a box will appear with the delete option. Confirm the deletion to permanently delete the list.

From within the variable favorites list:
If you are viewing the variable favorites list you created, then you delete the cohort by clicking the delete button under the selected variables list.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Saved Cohorts

Cohorts are an way of creating custom groupings of the samples and/or cases that you are
interested in analyzing further. You may frequently re-use a cohort in multiple analyses. Creating a “saved cohort” allows you to do this. If you have any existing saved cohorts, they will appear here for you to view, edit and share (see below for details).

Creating and saving a cohort

To create a cohort from Your Dashboard, if you do not have a cohort created, click on the “Create Cohort” link in the
“Saved Cohorts” panel at the bottom of the page. This will take you to the cohort creation page.

If you already have saved cohorts, they will be listed in the “Saved Cohorts” panel. Click on the “Saved Cohorts” link in that panel and this will take you to a page that displays the details of your saved cohorts. Alternatively, to go directly to a given cohort, click on its name and you will be taken to the cohort details page of that cohort.

To create a new saved cohort, use the “Create Cohort” link.

Cohort Creation Page

Using the provided list of filters on the left hand side, you can select the attributes and features
that you are interested in either from ISB-CGC data or the User Data tab. TCGA Data is the first program to be displayed, next to it is CCLE and TARGET Data tabs. You are able to create a cohort with multiple program filters. CCLE (The Cancer Cell Line Encyclopedia) data - is open access data set that can be used to view sequence data with the IGV viewer without having dbGaP permissions.

By clicking on a feature, the field will expand and provide you with additional filtering options.
For example, when you click on “Vital Status”, it expands and provides a list containing “Alive”, “Dead”, and
“NA” as options you may choose from.
Selecting one or more of these will cause the filter(s) to appear in the Selected Filters
panel and visualizations on the page
will be updated to reflect that the current cohort has been filtered according to Vital Status.
The numbers beside the selectable
filter values reflect the number of samples that have that attribute based on all other filters that
have been selected.

Individual selections in a filter are “ORed” together, meaning if any of the selected conditions are met they will be in the filter. Filters are “ANDed” together, meaning that selecting two filters means that the cases and samples are created based on both filters being executed. There may be cases where you have 0 cases and samples, because the combination of filters you have chosen are ALL not present (AND function).

Program Selection Panel

The panel in the center of the screen, with four tabs called “TCGA DATA”, “CCLE DATA”, “TARGET DATA”, and “USER DATA” will allow to create a cohort between data programs in the system and data that you have uploaded. The TCGA, CCLE, and TARGET DATA tab each have three tabs called “CASE”, “DATA TYPE”, and “MOLECULAR” which allow you to apply filters to the cohorts your are creating using ISB-CGC hosted data. For the USER DATA tab, there is one tab called “PROJECTS & STUDIES” which allow you to filter by the projects or studies you have uploaded to the system. Below are the details of each tab.

Please Note: Selecting the program filter will add all samples pertaining to program. Also there is a mouse over feature that will display the disease code long name if it’s part of the TCGA dataset.

	TCGA Cases Tab

	TCGA Data Type Tab

	CCLE Cases Tab

	TARGET Cases Tab

	TARGET Data Type Tab

	Program

	Pathology Image

	Program

	Program

	mRNA Gene Quantification

	Project Short Name

	Somatic Mutation

	Project Short Name

	Project Short Name

	miRNA Isoform Quantification

	Disease Code

	Copy Number Segment Masked

	Disease Code

	Disease Code

	miRNA Gene Quantification

	Vital Status

	mRNA Gene Quantification

	Gender

	Vital Status

	Aligned Reads

	Gender

	DNA Variation VCF

	Sample Type

	Gender

	

	Age at Diagnosis

	Aligned Reads

	Site Primary

	Age at Diagnosis

	

	Sample Type

	Protein Quantification

	Histology

	Sample Type

	

	Tumor Tissue Site

	miRNA Isoform Quantification

	Histological
SubType

	Race

	

	Histological Type

	miRNA Gene Quantification

	
	Ethnicity

	

	Pathologic Stage

	mRNA Isoform Quantification

	
	WBC at Diagnosis

	

	Person Neoplasm
Cancer Status

	Genotypes

	
	Year of Diagnosis

	

	Neoplasm Histologic
Grade

	DNA Methylation Beta

	
	Event Free Survival

	

	BMI (Body Mass Index)

	
	
	Days to Last Followup

	

	HPV Status

	
	
	Days to Last Known
Alive

	

	Residual Tumor

	
	
	Days to Birth

	

	Tobacco Smoking
History

	
	
	Days to Death

	

	Race

	
	
	
	

	Ethnicity

	
	
	
	

	Year of Diagnosis

	
	
	
	

	Menopause Status

	
	
	
	

	Days to Last
Known Alive

	
	
	
	

	Preservation Method

	
	
	
	

Molecular Tab

	Gene Mutation Status (creating a cohort based on the presence of a mutation (of various types) in a gene)

Programs & Projects Tab

	User Program

	User Project

Save As New Cohort Button

Push this button if you wish to save the cohort based on the filters you have set. You will be asked for a cohort name and the selected filters will be displayed. Enter the name (any text) and push the “Create Cohort” button.

NOTE: When working with multiple programs you will see a yellow notification box stating, “Your cohort contains samples from multiple programs. Please note that filters will only apply to samples from the program indicated by the tab they were chosen on - they will not apply to samples from other programs in this cohort.”

Selected Filters Panel

This is where selected filters are shown for each program so there section to see what filters have been selected. You have to toggle between program tabs to see the filters selected for each program.

If you have not saved the cohort yet, clicking on “Clear All” will remove all selected filters for that program. Also, if you have not saved the cohort yet, selecting an X beside a single filter will remove that filter. If you have saved the cohort, the X is not present as this function is disabled in saved cohorts (to add back to an existing cohort, you can use set operations - see below).

Details Panel

This panel shows the Total Number of Samples and Total Number of Cases in a cohort that is actively being created with the filters that have been selected. If there is a small “timer” icon, the calculation is taking place - the results should appear soon.

Clinical Features Panel

This panel shows a list of images (called “treemaps”) that give a high level breakdown of the selected samples for a
handful of features for the selected program:

	TCGA Clinical Features Panel

	CCLE Clinical Features Panel

	TARGET Clinical Features Panel

	Disease Code

	Disease Code

	Disease Code

	Vital Status

	Gender

	Vital Status

	Sample Type

	Site Primary

	Gender

	Tumor Tissue Site

	Histology

	Sample Type

	Gender

	Histological SubType

	Age At Diagnosis

	Age At Initial Pathologic
Diagnosis

	
	

By using the “Show More” button, you can see the last two tree maps. Mousing over an image shows the details of each specific section of the image and the number of samples associated with it.

Data File Availability Panel

NOTE: this function is now available only when editing a created cohort. To access this function, please create the cohort and edit it as described below.

This panel shows a parallel sets graph of available data files for the selected samples in the cohort. The large headers over
the vertical bars are data types. Each data type (vertical bar) is subdivided according to the different platforms
that were used to generate this type of data (with “NA” indicating samples for which this data type is not available).
Each sample in the current cohort is represented by a single line that “flows” horizontally from left to right,
crossing each vertical bar in the appropriate segment.

Hovering on a swatch between two vertical bars, you will see the number of samples that have data from those
two platforms.

You can also reorder the vertical categories by dragging the headers left and right and reorder the
platforms by dragging the platform names up and down.

Programs & Projects Panel

This panel displays a list of images (called “treemaps”) similar to the clinical features panel, but can only be found when the User Data tab is selected. This panel displays a high level breakdown of the projects and studies you have uploaded to the system. Another similarity to the clinical features panel hovering over the image will show details of the specific section of the image and the number of samples associated with it.

Operations on Cohorts

Viewing and Editing a Cohort

Once you have created a “Saved Cohort” you can view and edit it. To view a cohort, select it by clicking on its name either from the “Saved Cohorts” panel on the main “Your Dashboard” page or on the “Cohorts” page listing all your saved cohorts.

When you have gone to the “Cohorts” page, you will be shown details of the cohort on the “SAVED COHORTS” tab. The “PUBLIC COHORTS” tab shows public cohorts that are commonly selected. Public cohorts can be used for a “New Workbook” and “Set Operations”.

From the “COHORTS” page you can select:

	New Workbook: Pushing this button creates a New Workbook using the selected Cohorts

	Delete: Allows you to delete selected cohort(s) (if you confirm by clicking the second delete button presented)

	Set Operations: Allows you to perform set operations on selected cohorts (see below for details)

	Share: A dialogue box appears and the user is prompted to select users that are registered in the system to share selected cohort(s) with.

Set Operations

You can create cohorts using set operations on the Cohorts page.

To activate the set operations button, you must have at least one cohort selected in your “Cohorts” page.
Upon clicking the “Set Operations”
button, a dialogue box will appear. Now you may do one of the following:

	Enter in a name for the new cohort you’re about to create.

	Select a set operation.

	Edit cohorts to be used in the operation.

	Add A Cohort

The intersect and union operations can take any number of cohorts and in any order.
The complement operation requires that there be a base cohort, from which the other cohorts will be subtracted from.

Note: To combine the User uploaded data and the ISB-CGC data, use the Set Operations function. This is possible since the list of barcodes is what is used to create the set operation. For example, to make a cohort of user data samples and ISB-CGC curated samples, Set Union must be used, and to filter user data which is an extension of TCGA or TARGET samples, Set Intersection must be used.

The figure below shows what the results of the set operations will be (represented by I for Intersect, U for Union, and C for Complement). There are two types of sets shown, those that overlap (on the left) and those that are nested (on the right). For the last row (complement operations), the “Subtracted” area is removed from the “Base” area to result in the Complement (C).

[image: ../../_images/SetOperations.PNG]
Click “Okay” to complete the set operation and create the new cohort.

Cohort Details Page

The cohort details page displays the details of a specific cohort. The title of the cohort is displayed at the top of the page.

From the “SAVED COHORTS” tab you can:

	New Workbook: Pushing this button creates a New Workbook using the cohort

	Edit: Pushing this button makes the filters panel appear. And filters selected will be additive to any filters that have already been selected. To return to the previous view, you must either save any NEW selected filters (with the “Save Changes” button), or choose to cancel adding any new filters (by clicking the “cancel” link).

	Comments: Pushing “Comments” will cause the Comments panel to appear. Here anyone who can see this cohort can comment on it. Comments are shared with anyone who can view this cohort. They are ordered by newest on the bottom. Selecting the “X” on the Comments panel will close the panel. Any user who owns or has had a cohort shared with them can comment on it.

	Duplicate: Making a copy will create a copy of this cohort with the same list of samples and cases and make you the owner of the copy. This is how you create a copy of another researchers cohort that they have shared with you (note: If they later change their cohort, your cohort will not be updated, it will remain the same as it was at the time you duplicated it).

	Delete: Allows you to delete this cohort (if you confirm by clicking the second delete button presented)

	View Files: Allows you to view the list of files associated with this cohort (see details below)

	Download IDs: Provides a list of sample and cases IDs in the cohort

	Share: A dialogue box appears and the user is prompted to select registered users to share the cohort with.

ISB-CGC DATA and USER DATA tab

Both tabs are displayed and can be selected. The corresponding panels on each tab will display data on either ISB-CGC data or user uploaded data with cohorts that you created or shared with you.

Current Filters Panel

This panel displays current filters that have been used on the cohort or any of its ancestors. If you have selected multiple These cannot be modified. To add additional filters to this list use the Edit button.

Details Panel

This panel displays the Internal ISB-CGC Cohort ID (the identifier you use to programmatically use this cohort through our APIs), and the number of samples and cases in this cohort. The number of samples may be larger than the number of cases because some cases may have
provided multiple samples.
This panel also displays “Your Permissions” which can be either owner or reader, as well as revision history. If you have edited the cohort, the filters that were used to originally create the cohort are displayed under the “Creation Filters” label, the newly applied filters since original creation are displayed under the “Applied Filters” label.

TCGA DATA, CCLE DATA, TARGET DATA and USER DATA Tabs

Selecting any program tab will be enabled if you have selected filters for that program. By selecting the tab you will display the Clinical Features panel and the Data File Availability panels for the program selected.

Clinical Features Panel

This panel shows a list of tree maps that give a high level break of the samples for a handful of features for the program view selected:

	TCGA Clinical Features Panel

	CCLE Clinical Features Panel

	TARGET Clinical Features Panel

	USER DATA Programs & Projects Panel

	Disease Code

	Disease Code

	Disease Code

	Program

	Vital Status

	Gender

	Vital Status

	Project

	Sample Type

	Site Primary

	Gender

	

	Tumor Tissue Site

	Histology

	Sample Type

	

	Gender

	Histological SubType

	Age At Diagnosis

	

	Age At Initial Pathologic
Diagnosis

	
	
	

Data File Availability Panel

This panel shows a parallel sets graph of available data files for the selected samples in the cohort. The large headers over
the vertical bars are data types. Each vertical bar may be broken up to represent different platforms used to generate
that type of data (and “NA” for samples for which that data type is not available).
The sets of lines that “flow” from left to right indicate the number of samples for which each type of data files are
available. If you hover over a horizontal segment between two bars, you will see the number of samples that have both those data
type platforms. You can also reorder the vertical categories by dragging the headers left and right and reorder the
platforms by dragging the platform names up and down.

View Files Page

	“View Files” takes you to a new page where you can view the complete list of data files associated with your current the cohort.

	The file list page provides a paginated list of files available with all samples in the cohort. Here, “available” refers

to files that have been uploaded to the ISB-CGC Google Cloud Project, including both controlled access and open access data.
You can use the “Previous Page” and “Next Page” buttons to see more values in the list.

You can filter by Genomic Build either HG19 or HG38 and view which platforms and files are available for the build selected. You may also filter on these files if you are only interested in a specific data type and platform. Selecting a filter will
update the associated list. The numbers next to the platform refers to the number of files available for that platform.

If there are files that contain read-level data, you will be able to select files to view in the IGV
viewer by selecting check boxes beside the viewer and selecting “Launch IGV” button. Only if you have authenticated
as a dbGaP authorized user will you be able to select controlled access files to view in the IGV viewer (CCLE data does not require authorization to view the sequence data in the IGV viewer).

Download File List as CSV

To download a list of files that are part of this cohort, select the link in the upper right on the File Listing panel called “Download File List as CSV”. This will begin a
download process of all the files available for the cohort, taking into account the selected Platform filters. The file
contains the following information for each file:

	Program

	Sample Barcode

	Platform

	Pipeline

	Data Level

	File Path to the Cloud Storage Location

	Access type (open or controlled access)

Viewing a Sequence

When available, sequences in a cohort can be viewed using the IGV viewer. To find those sequences that can be viewed with the IGV viewer, open a cohort and select the “View Files” button at the top of the page. The files associated with your cohort will be shown, with the last column indicating if the IGV viewer can be used to view the contents of that file.
This is indicated by a checkbox beside either “GA4GH” and/or “Cloud Storage”). Clicking the “Launch IGV” button will take you to an IGV view of the selected sequence(s) data.
Controlled access files will be viewable by sequence ONLY if you have authenticated as a dbGaP-authorized user.

(more information about Viewing a Sequence in the IGV Viewer).

Deleting a cohort

From the “COHORTS” page:
Select the cohorts that you wish to delete using the checkboxes next to the cohorts. When one or more are selected, the
delete button will be active and you can then proceed to deleting them.

From within a cohort:
If you are viewing a cohort you created, then you can delete the cohort using the delete button on the menu.

Creating a Cohort from a Visualization

To create a cohort from visualization, you must be in plot selection mode. If you are in plot selection mode, the
crosshairs icon in the top right corner of the plot panel should be blue. If it is not, click on it and it should turn
blue.

Once in plot selection mode, you can click and drag your cursor of the plot area to select the desired samples. For a
cubbyhole plot, you will have to select each cubby that you are interested in.

When your selection has been made, a small window should appear that contains a button labelled “Save as Cohort”. Click
on this when you are ready to create a new cohort.

Put in a name for you newly selected cohort and click the “Save” button.

Copying a cohort

Copying a cohort can only be done from the cohort details page of the cohort you want to copy.

When you are looking at the cohort you wish to copy, select Duplicate from the top menu.

This will take you to a new copy of the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Program Data Upload

Uploading your own data is a way of creating custom groupings of the samples and/or cases that you are interested in analyzing further with the data that is already preexisting in our system or tools that we have on the system. You may frequently re-use the data that was uploaded in multiple analyses. Creating a “Program” allows you to do this. If you have any existing Programs with data uploaded, they will appear here for you to view, edit and share (see below for details).

Files and File Formats

The Program Data Upload uses a number of pre-defined file formats to get data into the system and make it available for use. The Other/Generic file format is the most flexible. This format assumes that the first row of the file contains the column headers and all subsequent rows contain data. The remaining file formats are all matrix formats where the first column (or columns in some data types) contain identifiers like gene or miRNA name, the first row contains sample identifiers and the “cells” contain the actual data values. Examples of the accepted matrix format files are shown below:

NOTE: For the matrix files, the text case matters for the required columns (lower case is different from upper case). In addition, the ISB-CGC system will not validate any identifiers such as barcodes or gene names. It is up to the user to make sure that uploaded data is correctly identified.

	DNA Methylation

This is a simple matrix file. The first column should have the header Probe_ID. Sample barcodes should be the headers for all remaining columns.

	Probe_ID

	Barcode 1

	Barcode 2

	Barcode N

	Probe ID 1

	Value 1

	Value 2

	Value N

	Probe ID 2

	Value 1

	Value 2

	Value N

	Probe ID N

	Value 1

	Value 2

	Value N

	Gene Expression

The Gene Expression matrix file has two required columns:

	Name: This is the accession number for the gene

	Description: This is the gene symbol for the gene

	Name

	Description

	Barcode 1

	Barcode 2

	Barcode N

	Accession 1

	Gene name 1

	Value 1

	Value 2

	Value N

	Accession 2

	Gene name 3

	Value 1

	Value 2

	Value N

	Accession N

	Gene name N

	Value 1

	Value 2

	Value N

	microRNA

There is one required and one optional column for microRNA:

	miRNA_ID is required and is generally the ID for the miRNA_ID

	miRNA_name is optional and can be used to provide alternative names for the miRNA. If not present, the BigQuery data table will have null in this column

	miRNA_ID

	miRNA_name

	Barcode 1

	Barcode 2

	Barcode N

	miRNA ID 1

	Alt name 1

	Value 1

	Value 2

	Value N

	miRNA ID 2

	Alt name 2

	Value 1

	Value 2

	Value N

	miRNA ID N

	Alt name N

	Value 1

	Value 2

	Value N

	Protein Expression

Protein Expression has three required columns:

	Protein_Name: This is the name or symbol for the protein

	Gene_Name: This is the name of the gene associated with the protein

	Gene_Id: This is the accession number for the gene

	Protein_name

	Gene_Name

	Gene_Id

	Barcode 1

	Barcode 2

	Barcode N

	Protein 1

	Gene Name 1

	Gene ID 1

	Value 1

	Value 2

	Value N

	Protein 2

	Gene Name 2

	Gene ID 2

	Value 1

	Value 2

	Value N

	Protein 3

	Gene Name 3

	Gene ID 3

	Value 1

	Value 2

	Value N

	Other/Generic

Files in Other/Generic format are not matrix files, but rather have the data in columns. The order of the columns is very flexible, and the upload interface will allow users to define what kind of data is in each of the columns. The only requirement is that one, and only one, of the columns should be sample barcodes. In addition, all rows must have the same number of columns. Any completely blank columns will be flagged and should be removed. Any columns containing blank entries will have null used for the blanks in the BigQuery data table.

NOTE: Currently, each Sample Barcode can only be represented once in a file. Files with the same barcode on multiple rows will cause a failure. If you have multiple data values for a single barcode (like gene expression values for multiple genes) you will either have to create a matrix file or upload multiple files to Other/Generic.

Creating and Saving a New Program

To create a new program from Your Dashboard, if you do not have a program created, click on the “Upload Program Data” link in the “Saved Programs” panel at the bottom of the page. This will take you to the Data Upload page.

If you already have Programs created, they will be listed in the “Saved Programs” panel. Click on the “Saved Programs” link in that panel and this will take you to a page that displays the details of your existing Programss. Alternatively, to go directly to a given Program, click on its name and you will be taken to the program details page of that program.

Registering Cloud Storage Buckets and BigQuery Datasets - a pre-requisite for using your own data in ISB-CGC

You will need to have a BigQuery Dataset and a Google Cloud Storage bucket registered to your Google Cloud Project through the Google Project details page in the UI. (Please note: the names of the buckets and datasets are case sensitive.)

How To Register Buckets and Datasets

Once you have created a bucket and a dataset in the Google Cloud Console of your Google Cloud Project, you will need to register them with your project name using the Webapp.

Step 1: Click on your user icon in the upper right.

[image: ../../_images/Register_Step_1.png]
Step 2: Click on “View Registered Google Cloud Projects”

[image: ../../_images/Register_Step_2.png]
Step 3: Click on the project you wish to use. If you have not registered a project, follow the instructions `here`_.

[image: ../../_images/Register_Step_3.png]
Step 4: Use the “Register Cloud Storage Bucket” or “Register BigQuery Dataset” links to add buckets and datasets as needed

[image: ../../_images/Register_Step_4.png]

Data Upload Page

A New Program

To start an entirely new program, users should click on the Upload Program Data link on the front page of the Webapp (Your Dashboard). This will bring up a form where a new program can be defined. Users should fill out the required fields and any optional fields that would be helpful. Clicking on Select File(S) button will bring up a dialog to select the file with data.

NOTE: You can upload multiple files in a single step. The Type drop-down should be used to indicate what data type the file represents. If the data type is one of the choices besides Other, the file will have to conform to the specifications listed at the top of this page. For a more complete description of the options on this page, see the Data Upload Page Components section.

[image: ../../_images/MouseProject.PNG]
Project description and file selection

Clicking on the Next button brings up a form where users will select which bucket and BigQuery dataset the file upload should use. These buckets and datasets were registered according to the process above. The Platform and Pipeline fields can contain any useful description a user wishes to provide.

[image: ../../_images/Mouse_bucket_and_dataset.png]
Lastly, the user should click on the Upload Data button to start the process. Users will first see a page with a message indicating their data is being processed. Refresh the screen occasionally until either the final page is displayed or an error is shown indicating a problem with loading the file. Your data is being loaded into the BigQuery table you specified earlier for this data set.

[image: ../../_images/Mouse_processing.PNG]

Correcting Data Uploaded As Other

If your data does not fit into any of the existing pre-defined matrix formats, the Other data type will allow users to upload data that is in a tabular format. In this format, the first row of the file is assumed to be the description of each of the columns and all subsequent rows are assumed to be data. The system will attempt to define what kind of data are in each column, however this process may not always be correct and users must review the column data type assignments before proceeding.

In the example shown below, the automated process has identified two columns as potentially containing Sample Barcodes and has further misidentified a column containing decimal data (numeric float values) as containing categorical (text) data. The user will need to correct both instances so there is only one Sample Barcode column and define the expression data as decimal.

[image: ../../_images/OtherExample.PNG]

A New Project For An Existing Program

Adding a new project to an existing program follows the same steps as creating a new program. However, instead of filling out the new program information fields, users should click on the A New Project For An Existing Program tab and select an existing program from the drop-down menu. All other steps for describing and uploading the file will remain the same.

[image: ../../_images/MouseExisting.PNG]

Data Upload Page Components

This section describes the features found on the Data Upload page.

System Data Dictionary Link

This link goes to the System Data Dictionary which is a comprehensive list of all clinical data fields and possible values. This dictionary can be helpful in aligning metadata from the imported program to ISB-CGC data fields.

High Level Data Files

High level data files usually represent some level of data analysis as opposed to raw files. High level files can be used in Workbooks and visualized alongside ISB-CGC data.

Low Level Files for API Access

Files uploaded as low-level files for API access will not be usable in the Webapp, but rather will appear in the user’s Google Storage Bucket. This feature is intended for files like BAM or VCF files that contain more raw data.

File Type

This is the data type that the uploaded file represents. Currently the allowed data types are:

	Gene Expression

	miRNA Expression

	Protein Expression

	Methylation

	Other

File Format Requirements

All files must be tab delimited and meet the formatting requirements described in Files and File Formats.

[image: ../../_images/MouseProjectAnnotated.PNG]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Graphing User Data

Once a user has uploaded their own data [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/project_data_upload.html] to the Webapp, that data can be vizualized using the same graphing tools that are available when graphing TCGA and/or TARGET data. However, the process for graphing user data is slightly different from how it is done with TCGA data

Important sections on the Webapp front page

The boxes in the figure below are links that are used to graph user data

[image: ../../_images/TopAnnotated.png]

Step 1: Create a Cohort from your project

	From the front page of the Webapp, click on Create Cohort to start the process

	Click on the User Data tab and select the project or study that will be the cohort

	Save as a new cohort

[image: ../../_images/CohortCreation.png]

Step 2: Create a Variables Favorite

	From the front page of the Webapp, click on Create Variable Favorites to start the process

	Click on the Projects tab to see the user supplied studies

	Select the variables that will be available to graph. Note that if the study has a large number of selections, using the browser search function can help locate the item.

	Give the variables a name and click on the Save as Favorite button

[image: ../../_images/Variables_selected_genes.png]

Step 3: Graph the favorites in a Workbook

	From the front page of the Webapp, click on Create a new Workbook

	Under the Source Data heading, select the Variables and Cohorts that you wish to use in the graph. In each case you will be brought to a page listing all of the available Variables or Cohorts. Simply select the desired ones and then click the Add to Workbook button

	Under the Analysis Type heading, select the appropriate graph type. This will cause a window to slide in from the right.

	Fill in the X and Y axis variables, select a variable to use for coloring and finally select the cohort to use.

[image: ../../_images/GraphingStart.png]

	Click on the Update Plot button to have the system gather the data and generate the plot.

	If changes need to be made to the plot, click on the Edit Analysis Settings link to bring back the graph dialog box.

[image: ../../_images/GraphingGraphed.png]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Integrative Genomics Viewer (IGV)

IGV is a widely used interactive tool for exploring genomic data. A web-based version is integrated into the ISB-CGC Web-App,
and the IGV desktop version can also be used to access ISB-CGC hosted data in Google Cloud Storage (GCS).
Information about this use-case is provided in this section. For more information about IGV, please follow the links
in the Acknowledgements section at the bottom of this page.

Accessing the IGV Browser from the Web Application

To access IGV, first select a cohort and then go to the cohort file list page (through the “View Files” link at the top of the page).

[image: ../../_images/cohort.PNG]
The resulting file list can be filtered using the build either HG19 or HG38 and the Platforms listed on the left. Any file that can be displayed in the IGV Browser will have a “Cloud Storage” (for files available via Google Cloud Storage) checkbox in the IGV column on the right side of the file table. Note that many files viewable in IGV may require that the user have dbGaP authorization to view controlled access data. If the user has been authenticated and authorized through the user details page, the user will be able to select files. Otherwise the cursor will be disabled when the user hovers over a checkbox. Open source data such as the CCLE project do not require dbGaP authorization and can be viewed by any authenticated user.

Once a maximum of five files have been selected, they can be viewed in the IGV Browser by clicking on the “Launch IGV” button in the upper right of the window

[image: ../../_images/CCLE_Files.PNG]

	NOTES:

	
	You will only be able to view controlled access sequence files if you have logged in as a registered dbGaP authorized user.

	You will need to disable your browser pop-up blocker to view files with IGV. If you see a 403 error when using the IGV viewer, the pop-up blocker is the cause of that error. Turn off the blocker and try again.

Using IGV Desktop Application to View Aligned Reads in Google Cloud Storage

You can also download and use the IGV desktop application to view aligned reads stored BAM files in Google Cloud Storage. To do this, download [http://www.broadinstitute.org/software/igv/download] the most recent version of IGV. After launching IGV, go to the “Settings” menu to enable the Google Menu item in the application (directions [http://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/igv.html] on how to do this).

To load BAM files from ISB-CGC Google Cloud Storage, use the “File” > “Load from URL…” menu item in the IGV application, entering the path to the bam file in GCS. Paths to BAM files stored by ISB-CGC can be found using the cohorts().cloud_storage_file_paths() and samples().cloud_storage_file_paths() APIs described here.

	NOTE:

	
	You will only be able to view controlled access sequence files if you have logged in as a registered dbGaP authorized user.

Acknowledgements

The copyright to the Integrative Genomics Viewer is held by the Broad Institute, and the software has been
released under the MIT License. For more information about IGV please see the
IGV home page [http://www.broadinstitute.org/software/igv/home] or the
IGV github repo [https://github.com/igvteam/igv].

We are grateful to the IGV team for their assistance in integrating IGV into the ISB-CGC web-app.

Robinson J T, Thorvaldsdottir H, Winckler W, Guttman M, Lander E S, Getz G & Mesirov J P, Integrative genomics viewer,
Nature Biotechnology 29, 24-26 (2011) [http://www.nature.com/nbt/journal/v29/n1/abs/nbt.1754.html].

Thorvaldsdottir H, Robinson J T, Mesirov J P,
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration,
Briefings in Bioinformatics 14, 178-192 (2013) [http://bib.oxfordjournals.org/content/14/2/178.full?keytype=ref&%2520ijkey=qTgjFwbRBAzRZWC].

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Viewing and using cohorts in the Webapp and API

Cohorts are one of the central concepts that researchers use when analyzing large datasets. As has been discussed elsewhere in the documentation, cohorts can be created either in the Webapp or via the ISB-CGC REST API. What may not be as clear is that cohorts created by one of the systems can be viewed and used in the other. In other words, you can create a cohort using the API and use it in the webapp or you can create a cohort in the webapp and use it in the API. This can give researchers significant flexibility in creating and sharing their cohorts.

It should be noted that the details of how to use the APIs can differ significantly depending on how users access the REST APIs. The examples given here are assuming users only have access to a console and not a higher-level language like Python where the APIs can be used more programatically. Additionally, the examples shown here are using the TCGA endpoint, but exactly the same functionality is avialable for TARGET and CCLE using the endpoints specific to those programs.

Related documents:

	Creating Saved Cohorts in the Web Application [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Saved-Cohorts.html]

	Details of “Cohorts… APIs” in the ISB-CGC API documentation [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/Programmatic-API.html]

Listing Cohorts

Any cohort you’ve previously created can be seen using either the Webapp or the API. In the Webapp, cohorts can be viewed both on the front page of the app as well as on the Cohorts page as shown in Figure 1.

[image: ../../_images/Fig1-WebappCohorts.png]
Figure 1: Cohorts shown on the front page (top) and Cohorts page (bottom) in the Webapp

Similarly, the cohorts().list() endpoint of the ISB-CGC API will return exactly the same set of cohort. The Google API Explorer [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_api/v2] is a convenient tool for examining API output from within a browser. In addition to showing the data returned from a query, it will also show a constructed query that can be used in a script (see Figure 2).

[image: ../../_images/Fig2-APIResponseNamesOnly.png]
Figure 2: Google API Explorer

Creating Cohorts

Creating cohorts using the Webapp [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Saved-Cohorts.html] has been fully documented and needs no further explanation. Creating cohorts using the API uses two different endpoints, cohorts().preview() [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/progapi3_tcga/cohorts_preview.html] and cohorts().create() [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/progapi3_tcga/cohorts_create.html]. These two endpoints have exactly the same query capabilities and differ only in that the preview endpoint will return the results of the query without creating a cohort while the create endpoint will create the cohort and name it using the name provided with the name attribute. In addition, due to the authentication requirement for the create endpoint, the query is sent as a JSON object

In the following example, the first query creates a cohort of patients from the UCS and CESC studies who were 20 years old or younger at the time of diagnosis. Since this query is run against the preview endpoint, no cohort is actually created, only the results shown in Figure 3 are returned.

https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/preview?age_at_initial_pathologic_diagnosis_lte=20&project_short_name=TCGA-UCS&project_short_name=TCGA-CESC

https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/preview?age_at_initial_pathologic_diagnosis_lte=20&project_short_name=TCGA-UCS&project_short_name=TCGA-CESC

Figure 3: Using Google API Explorer to preview creating a cohort

Due to the need for authentication and cohort naming, actually creating the cohort requires some modifications of the preview query. First, the name attribute needs to be specified with the name users will see in both the Webapp and in the cohorts().list() endpoint.:

https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/create?name={COHORT NAME}

Additionally a JSON object containing the query needs to be created.

{"Study": ["TCGA-UCS", "TCGA-CESC"], "age_at_initial_pathologic_diagnosis_lte": 20}

The commands above will create a cohort via the API

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Web-App Release Notes

	
	May 25, 2017:

	In collaboration with the GDC we now have TARGET pediatric cancer data available for analysis in the user interface. You are now able to create cohorts and plot analysis with information from TARGET, TCGA, and CCLE data.

In addition, we have replaced the previous APIs with a new version that supports the new user interface.

We have also released the analyzed data types that are based on genome build GRCh38 for TCGA and TARGET data. GRCh37 (HG19) is also still available for TCGA, TARGET, and CCLE datasets.

Workbooks, cohorts, and variables favorites list created before the data structure migration will still be available for analysis and have been labeled as legacy and version 1. If you have difficulty using version 1 workbooks, please contact us

Please Note:

NOTE 1:A number of TCGA and CCLE case IDs shown below will have been removed from all cohorts since they are no longer available from NCI’s Genomics Data Commons, and ISB-CGC is trying to mirror that data as much as possible.

TCGA cases: TCGA-33-4579, TCGA-35-3621, TCGA-66-2746, TCGA-66-2747, TCGA-66-2750, TCGA-66-2751, TCGA-66-2752, TCGA-AN-A0FE, TCGA-AN-A0FG, TCGA-BH-A0B2, TCGA-BR-4186, TCGA-BR-4190, TCGA-BR-4194, TCGA-BR-4195, TCGA-BR-4196, TCGA-BR-4197, TCGA-BR-4199, TCGA-BR-4200, TCGA-BR-4205, TCGA-BR-4259, TCGA-BR-4260, TCGA-BR-4261, TCGA-BR-4263, TCGA-BR-4264, TCGA-BR-4265, TCGA-BR-4266, TCGA-BR-4270, TCGA-BR-4271, TCGA-BR-4272, TCGA-BR-4273, TCGA-BR-4274, TCGA-BR-4276, TCGA-BR-4277, TCGA-BR-4278, TCGA-BR-4281, TCGA-BR-4282, TCGA-BR-4283, TCGA-BR-4284, TCGA-BR-4285, TCGA-BR-4286, TCGA-BR-4288, TCGA-BR-4291, TCGA-BR-4298, TCGA-BR-4375, TCGA-BR-4376, TCGA-DM-A286, TCGA-E2-A1IP, TCGA-F4-6857, TCGA-GN-A261, TCGA-O2-A5IC, TCGA-PN-A8M9

CCLE cases: LS123, LS1034

NOTE 2: The number of cases and samples when viewed in the User Interface as compared to the BigQuery tables vary across all three projects (TCGA, TARGET, and CCLE). This is because the user interface reflects the data available at the Genomic Data Commons, whereas data in BigQuery reflects either (for TCGA and CCLE) data at the original TCGA data coordinating center supplemented with Genomic Data Commons Data, or for TARGET, data received from the TARGET data coordinating center, not the Genomic Data Commons.

NOTE 3: We have removed Google Genomics functionality from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Also we are restructuring the handling of multiple Programs of data. Please feel free to provide feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

NOTE 4: For TARGET data the clinical and Gene Expression files themselves are available in the system. The bam files will be available soon!

Known Issues in this Data Structure Migration Sprint as of 05/25/2017

	Analysis Type : Seq peek Formatting Elongated on occasion

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If the user shares a cohort neither the owner nor the person who was granted access to cohort will receive a confirmation email.

	Cannot plot any data if you use a CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	On the existing cohorts table list page, the confirmation delete ‘blue x’ button does not remove selected cohort if you select another option e.g Set Operation. The same issue can be found in reverse if you select the ‘blue x’ on the confirmation page for set operation you can then select the delete button and see the cohort on the confirmation panel.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	The set operation for existing cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	When working with a new worksheet or a duplicate worksheet with workbooks for categorical features e.g bar chart you can select the log option. The log option only applies to numerical options.

	When working with workbooks, if you select the delete confirmation button multiple times while the page is loading you will be sent to an error page.

	When working on a scatter plot the Tobacco Smoking being used as the Legend is displayed in numerical values when it should be displayed as categorical values.

	The character limit for a workbook title name is currently inactive, if you exceed the possible limit you will be sent to an error page.

	You currently cannot plot user uploaded data when working with workbooks.

	Selecting cohort from worksheet “To Complete Analysis” section will send you to a 400 Bad Request error.

	You will experience latency issues when working with the create a new cohort page.

	When plotting, certain values will be displayed as numerical when it should be a categorical value e.g Tobacco Smoking History.

	The Data File Availability Panel for program CCLE in currently inactive when on the cohort details page and also editing a cohort with CCLE data.

	On the File List page you currently unable to access the bam files for the IGV Browser associated to build hg38 when working with TCGA data.

Issues that are resolved in the data structure migration sprint as of 05/25/2017

New Enhancements

	You will be returned a more detailed error message when uploading your own user data.

	The user interface now displays the same nomenclature as the Genomic Data Commons (GDC).

Bug Fixes

	The user data upload is enabled and users can now upload their own datasets and create cohorts using existing programs and newly uploaded data by the user.

	You can now have multiple Google Cloud Projects associated to your account and use only one bucket and dataset on one project with no interference.

	
	April 12, 2017:

	Please Note: We are currently having issues viewing bam files using the IGV browser for TCGA and CCLE data. We are working to fix the issue and it should be resolved as soon as possible.

	February 26, 2017:

NOTE 1: We have removed Google Genomics functionality from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Also we are restructuring the handling of multiple Programs of data. Please feel free to provide feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

NOTE 2: There will be a reduced number of releases and features over the next month (or so) while we do some rework required for enabling the distribution of additional data sets and types copied from the NCI-GDC. The new data type is TARGET data, and different analyzed data types are based on the hg38 genome builds. Stay tuned in likely the early part of 2017.

NOTE 3: User data uploads are currently disabled. Any projects you have previously uploaded will continue to be available in your Saved Projects list, and you can continue to work with them, but new data cannot be added at this time. We are working on bringing this function up again, please stay tuned.

Known issues in Sprint 15 as of 02/26/2017

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If the user shares a cohort neither the owner nor the person who was granted access to cohort will receive a confirmation email.

	Cannot plot any data if you use a CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	On the existing cohorts table list page, the confirmation delete ‘blue x’ button does not remove selected cohort if you select another option e.g Set Operation. The same issue can be found in reverse if you select the ‘blue x’ on the confirmation page for set operation you can then select the delete button and see the cohort on the confirmation panel.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	The set operation for existing cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	When working with a new worksheet or a duplicate worksheet with workbooks for categorical features e.g bar chart you can select the log option. The log option only applies to numerical options.

	If multiple Google Cloud Projects are registered through the user interface, it is advised to to add Google buckets and BigQuery datasets to both projects currently.

	When working with workbooks, if you select the delete confirmation button multiple times while the page is loading you will be sent to an error page.

	When working on a scatter plot the Tobacco Smoking being used as the Legend is displayed in numerical values when it should be displayed as categorical values.

	The character limit for a workbook title name is currently inactive, if you exceed the possible limit you will be sent to an error page.

Issues that are resolved in Sprint 15 as of 02/26/2017

Bug Fixes

	User will no longer be sent to the Social Network Login page when trying to login. If this occurs, please feel free to send ISB-CGC feedback using this link feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

	November 30, 2016: v1.13 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.13]

NOTE 1: We have removed Google Genomics functionality from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Also we are restructuring the handling of multiple Programs of data. Please feel free to provide here [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

NOTE 2: There will be a reduced number of releases and features over the next month (or so) while we do some rework required for enabling the distribution of additional data sets and types copied from the NCI-GDC. The new data type is TARGET data, and different analyzed data types are based on the hg38 genome builds. Stay tuned in likely the early part of 2017.

Known issues in Sprint 14 as of 11/30/2016

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	If a researcher leaves the workbooks inactive the page freezes.

	On the existing cohort list page for the delete button, select the blue x does nothing. It should be disabled.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	Some plot setting are saved or retrieved when working with worksheets.

	The set operation for existing cohorts intersection is behaving exceptionally slow.

Issues that are resolved in Sprint 14 as of 11/30/2016

Bug Fixes

	The user can no longer see BCGSC expression as an option when plotting genes if user does not select center filter on worksheet.

	Worksheets added to an existing workbook now behave the same as the original worksheet.

	Cohort set operations no longer performing exceptionally slow.

	November 16, 2016: v1.12 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.12]

Please Note: We are removing Google Genomics from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Please feel free to provide feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

Known issues in Sprint 13 as of 11/16/2016

	Analysis Type : Seq peek Formatting is Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	If a researcher leaves the workbooks inactive the page freezes.

	On the existing cohort list page for the delete button, selecting the blue x does nothing. It will be be disabled in a future release.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	Some plot setting are saved or retrieved when working with worksheets.

	Worksheets added to an existing workbook behave differently than the original worksheet.

	The user can see BCGSC expression as an option when plotting genes if user does not select center filter on worksheet.

	The set operation for existing cohorts intersection is behaving exceptionally slow.

Issues that are resolved in Sprint 13 as of 11/16/2016

New Enhancements

	A warning will be displayed if the user is trying to plot with required data missing e.g. must select an analysis, gene or variable, and a cohort to create a plot.

	On the project details page user will be sent to upload new study in existing project tab when they select upload data.

	When the user plots a graph with NA values, you will be returned a notification stating no valid data was found.

	There is no longer text overlapping on the Cloud Hosted Datasets readthedocs page in the documentation.

Bug Fixes

	The user can no longer add the same gene symbol twice if list to the same worksheet even if they have given their list different names.

	When the user selects multiple cohorts for color by feature for scatter plot all cohorts selected display on the graph.

	On the existing cohorts table for public cohorts, the new workbook and set operations buttons are now active.

	For all analysis types the x-axis and y-axis with certain variables text will no longer overlap and is displayed clearly.

	The upload data button is disabled on the review files page when no buckets or datasets are associated.

	Someone with multiple eRA accounts will be no longer have issues when trying to access controlled data.

	November 2, 2016: v1.11 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.11]

Known issues in Sprint 12 as of 11/02/2016

	The user can add same gene twice if list to the same worksheet it they have different names.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When the user plots a graph with NA values the UI returns a blank graph.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	If a researcher leaves the workbooks inactive the page freezes.

	On the existing cohort list page for the delete button, selecting the blue x does nothing. It should be disabled.

	On the cohort view files page capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	Some plot settings are saved or retrieved when working with worksheets.

	On the existing cohorts table for public cohorts, the new workbook and set operations buttons are currently inactive.

	Worksheets added to an existing workbook behave differently than the original worksheet.

Issues that are resolved in Sprint 12 as of 11/02/2016

New Enhancements

	Introduce user data upload functionality see documentation here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/project_data_upload.html].

	More fluid zoom feature when working with analysis worksheets.

	Case Sensitivity is now maintained in creating and displaying Workbook names throughout the entire User Interface.

	You can now create a new cohort from the menu bar.

	Variables menu bar is displayed similar to the rest of the favorites variables.

	On the dashboard, all create new buttons/links are identical.

	Owner of what is shared either a workbook or a cohort is able to remove multiple viewers. Viewers are also able to remove themselves.

	Removed BCGSC gene expression from the UI gene specification selection for plot analysis.

Bug Fixes

	X or Y- Axis for text no longer overlaps on worksheet for any analysis type, except for violin plot.

	The Legend is no longer displayed elongated when you use multiple cohort for color by feature for violin plot.

	miRNA_expression_values_fixed table in dataset 2016_07_09_tcga_data_open reflect only hg19.mirbase20 files.

	You are now able to duplicate a workbook that has been shared with you by someone else.

	Added pseudo-counts to the mosaic plots on the create new cohort page. This allows you to be sure of always being able to see (and select) the smallest contributors in these mosaics.

	Removing the filter from the filter confirmation from the create new cohort page, this will remove it from the rest of filter selections.

	Select the “check-all” feature on the create new cohort page will no longer cause duplicates on the selected filters panel.

	Create cohort from plot selection now works with all analysis types.

	Data inconsistencies between the create new cohort histogram filter and the most recent BigQuery datasets has been addressed and resolved.

	September 21, 2016: v1.10 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.10]

Known issues in Sprint 11 as of 9/21/2016

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When the user plots a graph with NA values the UI returns a blank graph.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	There are duplicate rows in the molecular data table in BigQuery.

Issues that are resolved in Sprint 11 as of 9/21/2016

New Enhancements

	Text in confirmation box of a duplication of a workbook has been enhanced.

	On the registered Google Cloud Projects page, icon has been added for the user to go directly to the Google Cloud Console page if desired.

	When the a Service Account is removed from the Access Control List, the project owner is sent an email with an explanation as to why the account was removed.

	IGV File List page displays of which page user is browsing.

Bug Fixes

	For a Cubby hole plot the x - axis name can be seen clearly.

	On a duplicate worksheet when working with gene specifications, user is able to select between all options multiple times.

	Page becomes elongated when the user builds a Cubby Hole plot.

	The selected variables for the plot setting on a worksheet are saved after the user leaves the workbook.

	When registering a Google Cloud Project the user is displayed the list of emails associated to the GCP only once.

	September 7, 2016: v1.9 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.9]

Known issues in Sprint 10 as of 9/07/2016

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	Page becomes elongated when the user builds a Cubby Hole plot.

	X-axis name cut off for cubby hole plot when x-axis has only 3 criteria.

	If the user shares a cohort they do not receive a confirmation email.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	When the user creates a duplicate worksheet,the bar chart with a gene with specification protein can freeze when selecting an option for the Select Feature.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When the user plots a graph with NA values the UI returns a blank graph.

	When a user duplicates a worksheet, some functionality related to plotting will not function properly on the duplicate worksheet.

Issues that are resolved in Sprint 10 as of 9/07/2016

New Enhancements

	Dictionary mapping feature types to units for use in plot displays added to worksheets.

	The user now has the option to make the axis logarithmic if the plot can display continuous numerical data for eg. mRNA expression levels.

	The NIH username entry is now case insensitive for dbGaP authorization.

	The mouse over feature works when the user has created a long workbook name on the existing workbooks table page.

	The mouse over functionality was added to the worksheet name within a workbook.

Bug Fixes

	The order by ascending or descending feature is now working properly for the existing workbooks table page.

	Tobacco Smoking History filter in the create cohort page displays the filters in descriptive values.

	The user can now select all existing cohorts when on the add cohort(s) to worksheet page.

	The gene specification selection on the worksheet page is now working properly.

	When a user shares a workbook with someone the person who received viewer access to the workbook is sent a confirmation email. If the person who shared the workbook then deletes the workbook before it’s opened, then the person clicks the invitation link the person is sent to the unknown invitation page. The button to go back to the Dashboard page appears like this, “Your Dashboard”

	The user is sent an email when the Service Account is removed the Access controlled list for having a user associated to the project who is not dbGaP authorized.

	August 24, 2016: v1.8 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.8]

Known issues in Sprint 9 as of 8/24/2016

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Analysis Type : Seq peek Formatting Elongated.

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	Page becomes elongated when the user builds a Cubby Hole plot.

	X-axis name cut off for cubby hole plot when x-axis has only 3 criteria.

	When the user shares a cohort they do not receive a confirmation email.

	User will be spammed with email every one minute when their service account is removed from the ACL control list. To stop this, please either delete your service account from the ISB-CGC interface, or remove the GCP project member(s) who is (are) not authorized to access the controlled data set. (see documentation here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-TCGA-Contolled-Access-Data.html]). We are planning to reduce the frequency of the notification emails to once per day.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	When the user creates a duplicate worksheet,the bar chart with a gene with specification protein can freeze when selecting an option for the Select Feature.

	When a user shares a workbook with someone the person who received viewer access to the workbook is sent a confirmation email. If the person who shared the workbook then deletes the workbook before it’s opened, then the person clicks the invitation link the person is sent to the unknown invitation page. The button to go back to the Dashboard page appears like this, “Your Dashboard{“

	Cannot plot any data if you use CCLE data cohort on a worksheet.

Issues that are resolved in Sprint 9 as of 8/24/2016

New Enhancements

	When the researcher is on the Register Service Account page, after they have submitted the Service Account associated to their Google Cloud Project a table that shows who is authorized will be prompted.

	There is now a column that says “Has NIH Identity”, before it said, “Has eRA Commons”.

	When the researcher creates a new cohort with more than 20 filters chosen the URL exceeds the limit of 2K characters and this affects the count for the Details panel. Therefore the user is now prompted with an alert box that will say, “You have selected too many filters. The current counts shown will not be accurate until one or more filter options are removed.” if this is ever the case.

	In the user details page, if the researcher has not registered a Google Cloud Project it will say, “Register a Google Cloud Project” on the link.

Bug Fixes

	The researcher can now delete whom they share cohort with from existing cohorts table.

	After 24-hours of use, a dbGaP authorized user can re-authenticate through the link provided in the user details page.

	The variable favorites list table page can now support a long title for the variable list.

	The filter name will appear aligned in the verification panel when the filter is name too long for the create in cohort filter confirmation selection on the create new cohort page.

	Grouped Data Type filter counts (Methylation, RNA Seq, miRNA Seq) now behave like the other count groups. The counts will behave as grouped values.

	The user can no longer select a categorical variable for selection for Histogram plot.

	The Filter token displays are now shown in ‘readable’ names when working with cohort filters.

	Controlled access BAM files are now viewable viewable in the IGV browser after the user has authorized their credentials.

	The user can now unlink an eRA commons account from their Google Identity in the user detail page.

	The violin plot was inconsistently failing. We have updated the JavaScript, therefore the Violin plot no longer fail.

	August 10, 2016: v1.7 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.7]

New Functionality Released in this Sprint

	The researcher can now create a cohort of participants and samples based on the presence of a gene mutation in a specified gene. Look for the new “Molecular” tab when you are creating a cohort.

	The bioinformatics programmer now has the ability to associate their Google Cloud Project’s Service Account. This allows the researcher to run computational pipelines from Google Virtual Machines using TCGA Controlled data (e.g. BAM files) for seven days before they have to reauthorize. For more information please select here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-TCGA-Contolled-Access-Data.html].

Known issues in Sprint 8

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Cannot delete whom you share cohort with from existing cohorts table.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not exactly coordinated the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count is off by one.

	After 24-hours of use, a dbGaP authorized user has to logout and then log back in to be prompted with NIH login link to re-access controlled data.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	Page becomes elongated when the user builds a Cubby Hole plot.

	X-axis name cut off for Cubby Hole plot when x-axis has only 3 criteria.

	When the user shares a cohort they do not receive a confirmation email.

	When a name is too long for variable favorites list table, the Last Updated” column will appear cut off.

	Filter name will appear off the verification panel when the filter is name too long for the create in cohort filter selection.

	Grouped Data Type filter counts (Methylation, RNA Seq, miRNA Seq) don’t behave like other count groups. The counts behave as though the values were for distinct categories.

	User will be spammed with email every one minute when their service account is removed from the ACL control list. To stop this, please either delete your service account from the ISB-CGC interface, or remove the GCP project member(s) who is (are) not authorized to access the controlled data set. (see documentation here). We are planning to reduce the frequency of the notification emails to once per day.

	The user can select a categorical variable for selection for Histogram plot, and will return a graph with no data.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	When the user creates a duplicate worksheet,the bar chart with a gene with specification protein can freeze when selecting an option for the Select Feature.

Issues resolved in Sprint 8

New Enhancements

	The user now has the option to select all or deselect all possible filters for any tab that has more than 10 possible options in the create new cohort page.

	The user can now set all existing tables by either ascending or descending order.

	The cohort_id has been added to the detail cohort page. This allows the user to reference a desired cohort with ease in the API endpoints.

	When creating a new cohort, the user is given the full description for sample type in the selected filters panel.

Bug Fixes

	Histological Type entries in create new cohort page on the user interface now match the Google BigQuery entries in terms of capitalization.

	Filters for data type counts in left panel currently is now working properly.

	When a user sets a cohort as Color by feature for violin plot legend will be set to cohort. Then when the user sets another color by feature it will update the legend.

	The user can no longer make a gene list without selecting a gene first.

	The user can now list the Last Modified section for the existing cohort table by either ascending or descending order.

	In the create new cohort page for the data type tab, the user can now select either True or False for DNA Sequencing, Protein, and SNP Copy Number filters.

	When the user edits a new cohort and sets the edited cohort to return zero samples, the user will be prompted to select different set of filters.

	July 20, 2016: v1.6 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.6]

Known issues in Sprint 7

	The user can add same gene twice if two identical worksheets with different names are uploaded.

	The Bar chart on the worksheet panel renders overlapping text.

	User cannot delete whom you share cohort with from existing cohorts table.

	Analysis Type : Seq peek Formatting Elongated.

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	Histological Type entries in create new cohort page on the user interface should match the Google BigQuery entries in terms of capitalization.

	When a user sets a cohort as Color by feature for violin plot legend will remain cohort.

	After 24 hour dbGaP authorization runs out the user is unable to re authenticate. (If you have this issue, please log out and log back in to be prompted with login link for dbGaP authorization.)

Issues resolved in Sprint 7

New Enhancements

	Created ability in GUI to make cohorts based on presence of an HPV status.

	Created ability in GUI to make cohorts based on BMI value.

	In the details panel for existing cohort have a section that shows the ISB-CGC cohort_id.

	Enhancements of GUI to view submenu item in different screen sizes and resolutions.

	New version of IGV javascript installed.

Bug Fixes

	User can no longer add same filter to existing cohorts.

	Optimized Security in the user interface.

	If a user opens a shared cohort it will appear once on the dashboard.

	Pathologic State Filter in create cohort Stage is displayed capitalized.

	Filter counts with 0 value do list when editing a pre-existing cohort.

	Filters for data type counting in left panel is working properly.

	After 24 hour dbGaP authorization runs out the user is able to re authenticate.

	User can not create new gene list without giving the gene list a name.

	July 6, 2016: v1.5 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.5]

Known issues in Sprint 6

	The user can add same gene twice if list to the same worksheet it they have different names.

	The user can add same filter to existing cohorts.

	The Bar chart on the worksheet panel renders overlapping text.

	Cannot delete whom you share cohort with from existing cohorts table.

	Analysis Type : Seqpeek Formatting Elongated.

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user opens a shared cohort it will appear twice on the dashboard.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count are off by one.

	Pathologic State Filter in create cohort Stage should be displayed capitalized.

	Histological Type entries in create new cohort page on the user interface should match the Google BigQuery entries in terms of capitalization.

	Filter counts with 0 value don’t list when editing a pre-existing cohort.

	Filters for data type counting in left panel currently is not working properly.

Issues resolved in Sprint 6

New Enhancements

	A user can only select the cloud storage checkbox if he or she has been authenticated and authorized through the user details page. Otherwise the user can view the cloud storage checkbox but there will be a disabled cursor icon when the user hovers over in an attempt to select the checkbox.

	The counts for the queries were refactored to match what was done for the APIs .

	The Download File List as CSV was refactored to a maximum of 65,000 files at once.

	Date formats on Workbooks, Cohort, Gene, and Variables list pages all reflect the same format.

	The Last Updated columns to variable and gene lists were added to the user Dashboard

Bug Fixes

	The user can now select a cohort in the color by feature section for the violin and the scatter plots in the worksheet section.

	The Gene list variable used for analysis in the worksheet plot settings section is the exact gene as compared to a gene that contains the string.

	The Comments button for both the workbook and the cohort section, when the user clicks the request multiple times within one second the user interface will not post duplicate comments in the comments section.

	The user can now select gene HP in Create Gene list favorite page to be used for analysis. For worksheet analysis the user now has ability to select different genes once one already selected and utilized for analysis.

	In the variable favorites table, the menu for a specific variable will no longer be cut off once a certain set of variables list are exceeded.

	A 400 Error pop up window will no longer appear as the user transitions from the File List page to IGV browser page.

	The Public Data Availability section will no longer display any cut off if the user drags data type to the left of the page away from the panel itself, in detail page of existing cohort or the create new cohort page.

	When the user edits a cohort, details section will display which filter(s) were applied for each update.

	Cloud storage path in CSV file download for GA/BCGSC and GA/UNC V2 platforms can now be viewed.

	The menu bar will display existing list for variable favorites list, gene favorites list, cohorts, and workbooks with no cut off.

	When the user has selected a variable for the y-axis, the chart will display the selected variable in the charts.

	When the user clicks Save Changes when modifying an existing cohort the user can will no longer be spammed with multiple cohorts created at once when clicking the button multiple times within one second.

	The Save cohort Endpoint default example for v1 now works properly.

	For the cohort_list API endpoint v1 will now pull only the cohort_id you specified.

	June 8, 2016: v1.4 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.4]

Known issues in Sprint 5

	The user can add same gene twice if list has different names.

	The user can add same filter to existing cohorts.

	In the Create new Cohort page, the left filters (#) does not re-populate as you select filters to match the sample number in clinical feature panel.

	The bar chart renders overlapping text in the x-axis and y-axis for certain variables.

	A user cannot delete whom you share a cohort with from the existing cohorts table.

	On a worksheet with the Analysis Type : Seq peek, the formatting will display Elongated when the user selects a certain gene.

	CCLE data in GUI is currently not parallel the CCLE data in BigQuery.

	User currently cannot select a cohort in the color by feature section in a worksheet.

	The Gene list used for analysis currently uses genes similar as to original gene and well as the specific gene added to list, in the plot settings menu.

	The comments button for both workbooks/cohorts, if user clicks the comment button multiple times within one second will post duplicate comment.

	User currently cannot select gene HP or gene’s with only two letters in the Create Gene list favorite page.

	In Violin plot - the user has no ability to select a different gene once one is already selected.

	In the variable favorites table, the menu for a specific variable will be cut off once a certain set of variables list are exceeded.

	A 400 Error pop up window will appear as the user transitions from the File List page to IGV browser page.

	Public Data Availability section will be cut is user drags data type title to the left of the page away from the panel itself,in detail page of existing cohort.

Issues resolved in Sprint 5

New Enhancements

	Upgraded system from using Django 1.8 to Django 1.9.

	A link to the google cloud platform has been added to the user details page.

	The TCGA filter is selected as the default project when creating a new cohort.

	When the user clicks on the browser back button, the user will remain on the same worksheet that they were previously on.

	When the user goes adds a new gene list, variable favorites list, and/or cohort from the worksheet data type panel, the button will display “Apply to Worksheet”.

	The feedback/help section has been moved to the top of the page to provide the user a more convenient way to send us feedback.

Bug Fixes

	User can no longer add a duplicate gene to same gene favorites list.

	To edit a gene name the user must now delete and re-type the desired gene name.

	The functionality of a duplicate worksheet drop down menu reflects the same functionality of the original worksheet.

	The Last Updated section reflects any changes made to the variable list, cohort list, and gene list in their corresponding tables.

	The File list page now allows the user to add a maximum of five files to use in the IGV browser between all the pages in the file list table.

	When a user hovers over clinical feature panel for Sample Type and Tumor Tissue Type the top row when hovered over the name is displayed clearly.

	Order by Ascending/Descending is working properly for Existing Cohorts table page.

	The user is now able to plot gene’s with a hyphen(-) in the gene name itself.

	The user is now able to download a maximum of 85,000 files at a time, in the File List page for a selected cohort.

	May 10, 2016: v1.3 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.3]

Known issues in Sprint 4

	A user can add same gene twice if identical gene list have different names.

	The user can add same filter already selected to an existing cohort.

	The create new Cohort left filters number count does not re-populate as you select filters to match sample number count in clinical feature panel.

	When a Bar chart renders overlapping text is displayed on the x-axis of the plot.

	Cannot delete whom you share a cohort with from the existing cohorts table only from the details page of a cohort.

	Analysis Type : Seq peek formatting is elongated when a user selects certain gene for analysis. Using the gene TP53 can reproduce this issue.

	The CCLE data in GUI currently does not parallel the CCLE data in BigQuery.

	A user can add a duplicate gene to same gene favorites list in the create new gene list page.

	By double clicking a gene name in the create new gene list page, the gene will expand but display a blank space.

	A duplicate worksheet will display the color by feature variables twice in the drop down list.

	A user currently cannot select a cohort in the color by feature section.

	The Gene list drop down list used for analysis should be exact gene only.

	The comments button for both workbook and cohort comments section, if the user is to click comment button multiple time within one second, this action will post a duplicate comment.

	The last Update section should reflect any changes made to variable list, cohort, and gene list for their corresponding tables.

	The user cannot select the gene HP in the Create Gene list favorite page.

Issues resolved in Sprint 4

New Enhancements

	Data Use Certification Agreement link updated and the help link was removed.

	The Data Type section in the Create new Cohort page name change from MIRNA Sequencing to miRNA Sequencing and SNP CN to SNP Copy-Number.

	The number of patients is now dynamically displayed in the create new cohort page when selecting filters in the details panel.

	The number of samples is now dynamically displayed in the create new cohort page when selecting filters in the details panel.

	By default in the create new cohort page, you will have the TCGA data filter selected.

	When creating a cohort, checking feature boxes will be throttled so as to avoid miss-represented data.

	Tooltips were added to the Sample Type section in the clinical features panel.

	Minor changes were made in personal details page.

Bug Fixes

	The Clinical Features Panel in the create new cohort page will no longer display BRCA even if unselected.

	The last updated section in existing workbooks panel does update when changes are made to existing workbook.

	Set operation Union patient number is working correctly.

	Upon duplicating a cohort it will duplicate the selected filter(s) as well.

	User is able to download file list as csv for any cohort with any filter selected.

	There is no legend cut off for violin plot or any other analysis type when the color by feature is set to Prior Diagnosis or any other variable.

	When user switches gene in plot settings the feature choices for that specification will refresh.

	The variable clinical search feature works properly when the user searches for clinical variables and then are used for analysis.

	April 27, 2016: v1.2 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.2]

Known issues in Sprint 3

	Can add same gene twice if list has different names.

	User can add same filter to existing cohorts.

	Create new Cohort left filters (#) does not re-populate as you select filters to match sample # in clinical feature panel.

	Clinical Features Panel in create new cohort page will still display BRCA even if unselected.

	Last updated section in existing workbooks panel does not update when changes are made to existing workbook.

	Bar chart renders overlapping text.

	Set operation Union patient # off by one.

	Legend Name cut off when name is too long.

	Upon duplicating a cohort it duplicates the selected filter as well.

	Cannot delete whom you share cohort with from existing cohorts table.

	Unable to down file list as csv for any other cohort only selected filter CCLE.

	Legend Cut Off for violin plot when color by feature set to Prior Diagnosis.

	When user switches gene in plot settings the feature choices for that specification disappears.

Issues resolved in Sprint 3

New Enhancements

	The comments section now has a max number of characters 1000 limit.

	Link created to Extend controlled access period to 24-hours from the moment the link is clicked.

Bug Fixes

	A user can now click new worksheet multiple times within a few seconds and only produce one sheet.

	The user must now add a new filter in an existing cohort to edit it the cohort.

	The duplicate button for an existing cohort will only make one duplicate at a time.

	Clicking 150+ selected filters will not create an error page.

	Cancel button on Create new gene list page will send you to Gene list favorites table menu.

	Violin plot : User can not add categorial value to y-axis.

	If user edits an existing cohort, the old filter(s) will not be removed.

	If a new worksheet is generated, the worksheet functionality is working properly.

	User will get the ‘500: There was an error while handling your request. If you are trying to access a cohort please log out - and log back in. Sorry for the inconvenience.’ if the user is inactive for more in 15 minutes when trying to create/use existing cohort.

	Clinical Feature Panel is displayed properly and reacts to filters being added/removed quickly.

	The user must have text to add a comment.

	All columns in file list table will be transferred/displayed when exported as csv file.

	April 14, 2016: v1.1 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.1]

Known issues in Sprint 2

	If user clicks create in new worksheet too many times within a few seconds will create duplicate worksheets

	Can add same gene twice if list has different names

	Apply filters button work when no filter is selected in edit cohorts page

	If user clicks create in new cohorts too many times within a few seconds will create duplicate cohorts

	User can add same filter to existing cohorts

	Clicking 150+ selected filters will create error page

	Create new Cohort left filters (#) does not re-populate as you select filters to match sample # in clinical feature panel

	Clinical Features Panel in create new cohort page will still display BRCA even if unselected

	Cancel button on Create new gene list page will send you to Data Source | Gene Favorites page

	Violin plot : User can add categorial value to y-axis

	Last updated section in existing workbooks panel does not update when changes are made to existing workbook

	If user edits an existing cohort the old filter(s) will be removed

Issues resolved in Sprint 2

New Enhancements

	Tool tips added for disease code in create new cohort page

	Disease in longname in tool tips the first letter is capitalized

Bug Fixes

	The user detail page will now display the correct date

	The plot settings for a new worksheet are now working properly

	Plot settings for duplicate worksheets are now working properly

	The plot settings will now match the analysis type for existing worksheet plot

	The user can now edit existing cohort name

	Set Operations : Intersection working properly

	Set Operations : Union working properly

	Set Operations : Complement is now working properly

	User is now able to delete selected filters from selected filter panel in new cohort page using the blue X

	Editing an existing variable favorites list will display previously selected variables

	(Already in documentation) Green checkmark will appear for IGV link

	Update plot button will now work on a duplicate worksheet(can be added with 3)

	User can now delete all cohorts with the select all feature

	Fixed bugs with Data Type Create new cohort generating errors

	The user can now search for variable favorite with the miRNA feature

	The user can now search for a variable favorite through the clinical search feature

	
	March 14, 2016: v1.0 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.0]

	
	When working with a worksheet two plots will be generated occasionally.

	Axis labels and tick values sometimes overlap and get cutoff.

	Page elongated when Cubby Hole plot generated and there are lots of values in the y axis.

	
	December 23, 2015: v0.2 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/1.1]

	
	Treemap graphs in cohort details and cohort creation pages will not apply its own filters to itself. For example, if you select a study, the study treemap graph will not update.

	Cohort file list download not working.

	
	December 3, 2015: v0.1 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/1.0]

	
	First tagged release of the web-app

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Quick Links

The table below describes the types of functions that can be performed in ISB-CGC and provides links to documentation on how to do those functions.

	Function

	In GUI

	With Command Line

	Work on the Google Cloud Platform

	
	Link to the Google Cloud Platform Console [https://console.cloud.google.com/]

	Getting a trial account on the Google Cloud Platform sponsored by Google [https://console.developers.google.com/billing/freetrial]

	Getting a trial account on the Google Cloud Platform sponsored by ISB-CGC

	General information on how to use the Google Cloud Platform Console [https://support.google.com/cloud/?hl=en#topic=3340599]

	Specific information on how to set up your GCP project for use with ISB-CGC

	How to manage project members and change member permissions [https://support.google.com/cloud/answer/6158846]

	
	Google Cloud SDK [https://cloud.google.com/sdk/]

	Google Cloud Shell [https://cloud.google.com/shell/docs/]

	Authenticating with Google (two approaches: gcloud init [https://cloud.google.com/sdk/gcloud/reference/init] and/or gcloud auth login [https://cloud.google.com/sdk/gcloud/reference/auth/login])

	Explore what data available

	
	Documentation

	GUI

	
	BigQuery R and Python Tutorials

	ISB-CGC Endpoints

	Google Genomics APIs from cohort or from sample

	Understand details of data

	
	Access TCGA controlled data

	View File List in GUI

	View Sequences with IGV

	Google BigQuery Web UI

	Google API Explorer [https://apis-explorer.appspot.com/apis-explorer/?base=https://api-dot-isb-cgc.appspot.com/_ah/api#p/]

	
	For data in BigQuery

	BigQuery Command Line Tool [https://cloud.google.com/bigquery/bq-command-line-tool-quickstart]

	BigQuery REST API [https://cloud.google.com/bigquery/bigquery-api-quickstart]

	For data in Google Cloud Storage

	Google Cloud Storage JSON API [https://cloud.google.com/storage/docs/json_api/]

	Google Cloud Storage gsutil [https://cloud.google.com/storage/docs/gsutil]

	For data in Google Genomics

	Google Genomics REST API [https://cloud.google.com/genomics/reference/rest/]

	Analyze ISB-CGC data

	
	Analyses with Bar Charts, Histograms, Scatter Plots, Violin Plots, Cubby Hole Plots and SeqPeek

	Google BigQuery Web UI

	
	BigQuery R and Python Tutorials

	ISB-CGC Endpoints

	Google Genomics APIs from cohort or from sample

	Create cohorts of patients

	
	Create cohorts

	Cohorts set operations

	Create a cohort from visualization (background and tool image)

	Develop queries with Google BigQuery Web UI and/or Google API Explorer [https://apis-explorer.appspot.com/apis-explorer/?base=https://api-dot-isb-cgc.appspot.com/_ah/api#p/] before creating cohorts with command line tools

	
	Use GUI saved cohorts in ISB-CGC Endpoints

	de novo using ISB-CGC Endpoints, BigQuery Command Line Tool [https://cloud.google.com/bigquery/bq-command-line-tool-quickstart], and/or BigQuery REST API [https://cloud.google.com/bigquery/bigquery-api-quickstart]

	Add your data to the cloud

	
	Uploading your low level data (e.g. Bam and VCF files) to Google Cloud Storage

	Upload high level summary data (such as Methylation, Gene Expression, microRNA, Protein Expression & Customized data) for plotting in the UI.

	
	Uploading your data to Google Cloud Storage [https://cloud.google.com/storage/docs/cloud-console#_using]

	Uploading your data to Google BigQuery [https://cloud.google.com/bigquery/loading-data-into-bigquery]

	Uploading your data to Google Genomics [https://cloud.google.com/genomics/v1/managing-datasets]

	Analyze your data with ISB-CGC data

	
	Plot your high level experimental data (such as Methylation, Gene Expression, microRNA, Protein Expression and Customized data) with other ISB-CGC data (e.g. TCGA).

	
	BigQuery R and Python Tutorials

	ISB-CGC Endpoints

	Google Genomics APIs from cohort or from sample

	Run bioinformatics pipelines/tools

	
	
	Google Compute Engine getting started guide

	Compute examples in Github [https://github.com/isb-cgc/examples-Compute] (with Common Workflow Language (CWL) and grid examples)

	Useful recipes [https://googlegenomics.readthedocs.org/en/latest/sections/process_data.html] in the Google Genomics Cookbook [https://googlegenomics.readthedocs.org/en/latest/index.html]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

DIY Workshop

These materials were originally created for in-person workshops, and have been modified and
updated to create a “Do It Yourself” workshop that you should be
able to work through on your own. If you run into problems please send email to feedback@isb-cgc.org.

Step #1: Setting up Your Local Environment

Your Google Identity

You may already have a Google identity – your institutional email may be a Google identity (if your
institution uses Google Apps), or you may have a personal GMail address. One way to check whether
your email address is a Google-managed identity is to go to the password assistance page [https://www.google.com/accounts/ForgotPasswd],
select “I don’t know my password” and enter your email address. If you get a response like “Please contact your domain IT administrator”
then your email address is not a Google identity.

If you dont’ have a Google identity, it only takes a minute to
create one [https://accounts.google.com/SignUp?dsh=308321458437252901&continue=https%3A%2F%2Faccounts.google.com%2FManageAccount#FirstName=&LastName=].

Installing the Google Cloud SDK

The Google Cloud SDK [https://cloud.google.com/sdk/] is an essential toolbox
for anyone working with the Google Cloud Platform. The Cloud SDK is easy to install and
runs on Linux, Mac OS X, and Windows.
It includes all of the command line tools, local emulators, and libraries that you will need.
There are three key command line interfaces (CLIs) that you’ll want to become comfortable using:

	gcloud [https://cloud.google.com/sdk/gcloud/] enables seamless local authentication and powerful command line access to many cloud resources

	gsutil [https://cloud.google.com/storage/docs/gsutil] lets you access Google Cloud Storage (GCS) from the command line

	bq [https://cloud.google.com/bigquery/bq-command-line-tool] provides access to BigQuery from the command line

Once you have the gcloud SDK installed, you can find out what your current/default Project ID is by
running gcloud config list from the command line. To initialize your default configuration, run
gcloud init <https://cloud.google.com/sdk/gcloud/reference/init>_ and follow the instructions.

Updates to the SDK are published every week or two, so you will frequently see a message that says:

Updates are available for some Cloud SDK components. To install them, please run: $ gcloud components update.

When you see this message, simply run gcloud components update at your convenience, and follow the
instructions.

Installing Chrome

If you do not already use the Chrome browser, we strongly suggest that you install
Google Chrome [https://www.google.com/chrome/browser/desktop/] on your laptop or desktop.
Although the ISB-CGC web-app should work on any modern browser, it is optimized for the Chrome browser.

Installing R and RStudio

If you want to be able to run R scripts locally, you will want to install
R [https://cran.r-project.org/] as well as the interactive environment
RStudio [https://www.rstudio.com/products/rstudio/download/].
You can follow these tips to get started.

Step #2: Setting up Your Google Cloud Platform (GCP) Project

Creating / Obtaining your GCP Project

In order to make use of all of the data, tools, and functionality described in this workshop,
you will also need your own GCP project.

We’d like to encourage you to take advantage of the
free trial [https://cloud.google.com/free/] offered by Google.
If you have already used this one-time offer (or there is some other reason you cannot use it)
please see the information here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Support.html]
about requesting an ISB-CGC provided (and funded) project. (We’ll also be happy to do that for
you after you use the $300 Google credit / free trial.)

Google Cloud Platform Console

The Google Cloud Platform Console (which we will refer to from now on simply as the Console) is your
web-based interface to your GCP Project. From the Console, you can check the overall status of your
project, create and delete Cloud Storage buckets, upload and download files, spin up and shut down VMs,
add members to your project, etc. No setup or installation are required.

	sign into your Chrome (or other) browser using your Google identity (the one associated with the GCP project that you created yourself or that we set up for you)

	go to the Google Cloud Platform Console [https://console.cloud.google.com]

	you should automatically be signed in to your own GCP project;

	in the top blue bar, towards the right, you may be able to select between two or more projects;

	in the GCP Console, if you click on Home you will see your current Project ID on the Dashboard

	this Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf] will help you learn the basics that you are most likely to need

NOTE: If you’re just getting started working in the Google Cloud, you will probably only have one project.
Over time, however, you may find that it is useful to create additional projects for any of a variety of reasons.
You may have different grants or contracts that need to be charged for specific research activities, or you may
have different groups of collaborators that you are working with, or you may be working with different sets of
controlled-access data. All of these are good reasons to set up multiple, separate, GCP projects. When you do
so, however, you will need to learn to pay attention to which project is your “current” project. Any costs
that you may incur, will alwasy be charged to your current project. The types of actions that incur costs
include uploading data to a storage bucket, spinning up a VM, running a BigQuery query, etc.

	If you are using the Console, you will see the Project Name in the blue bar at the top of the page, and the browser url should look like: https://console.cloud.google.com/home/dashboard?project=<project-id>.

	At the command-line, you can use the gcloud tool to verify your current configuration (as described above).

	Finally, if you are using the BigQuery Web UI, the url should look like this:

	https://bigquery.cloud.google.com/project/<project-id> or

	https://bigquery.cloud.google.com/queries/<project-id>.

Enabling Required Google APIs

To make use of all of the functionality described in these tutorials (including running the example code
available on github), you will need to have certain APIs
enabled for your GCP project. Specifically, you will need the following to be enabled (some may already be
enabled by default):

	Google Compute Engine

	Google Genomics

	Google BigQuery

	Google Cloud Logging

	Google Cloud Pub/Sub

This tutorial [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf] will
walk you through the steps involved in enabling new APIs for your project.

Additional Quickstart Tutorials

	An Introduction to BigQuery [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]

	An Introduction to Cloud Datalab [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Datalab.pdf]

	An Introduction to Cloud Shell [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Shell.pdf]

ISB Cancer Genomics Cloud (ISB-CGC)

	Introductions, Overview etc

	Introduction to the ISB-CGC Platform [https://github.com/isb-cgc/readthedocs/raw/master/docs/include/workshop-intro-Aug2016.pdf]

	A Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]

	Copy/Paste Cheat Sheet [https://docs.google.com/document/d/1LYSRlmm2RwpuOpnpqjmRxHhZ6kU18grz3o5IPq_OhJ8/edit?usp=sharing] (you might find this useful later on in the day)

	ISB-CGC Web App & API Endpoints

	Web-App Tutorial (walkthrough [https://docs.google.com/document/d/1z3XWf_cA-IyqRwmaZofZb5FCWPaW3KU8trXsrafm46c/edit?usp=sharing]) (doc)

	API Endpoints demo (doc)

	ISB-CGC Open-Access BigQuery Tables

	Overview of TCGA data (doc)

	BigQuery SQL Tutorial

	Analysis using R (github [https://github.com/isb-cgc/examples-R])

	Computing in the Cloud

	Useful References: Cloud SDK cheat sheet [https://docs.google.com/document/d/1ZZTsjHzQClA0gZyOhlBav-I4XQhW81Yx980qvgy_jr8/edit?usp=sharing]

	Introduction to GCE (Google Compute Engine) (slides [https://docs.google.com/presentation/d/13ORIDboGC27uCMf_C9w9WIi0cK9tGO7cqgp6vwA2miE/edit?usp=sharing])

	Google Genomics “Pipelines” Service (slides [https://docs.google.com/presentation/d/1_rRvlhNuA0_SQuO2SOru7ttjPvzlygW3ALILcQ-JEjg/edit?usp=sharing])

	ISB-CGC Pipelines Framework (slides [https://docs.google.com/presentation/d/1akqoZImzei2D47O8rcWrcEzsWPYxUtL-2-eUdiBzzgo/edit?usp=sharing], github [https://github.com/isb-cgc/ISB-CGC-pipelines])

Other Topics

DREAM Challenge: Somatic Mutation Challenge – RNA

	DREAM challenges are powered by Sage Bionetworks [http://sagebase.org/]

	Presentation [https://docs.google.com/presentation/d/1p5W7ZDdahBYKBOcHu1wTeDClBbq7baDJs6EdMscupkc/edit?usp=sharing]

	Somatic Mutation Calling Challenge: RNA [https://www.synapse.org/#!Synapse:syn2813589/wiki/401435] – Registration is now open!

Google Genomics

	Overview [https://cloud.google.com/genomics/]

	Sign up [https://cloud.google.com/genomics/#contact-form] to receive the Google Genomics whitepaper

	github repositories [https://github.com/googlegenomics]

	Google Genomics Cookbook [https://googlegenomics.readthedocs.io/en/latest/] with sections on:

	finding published data sources [https://googlegenomics.readthedocs.io/en/latest/use_cases/discover_public_data/index.html]

	data-processing [https://googlegenomics.readthedocs.io/en/latest/sections/process_data.html] on the Google Cloud

	data-analysis [https://googlegenomics.readthedocs.io/en/latest/sections/analyze_data.html] on the Google Cloud

	accessing data using IGV [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/igv.html], BioConductor [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/bioconductor.html], R [https://googlegenomics.readthedocs.io/en/latest/api-client-r/index.html], Python [https://googlegenomics.readthedocs.io/en/latest/use_cases/getting-started-with-the-api/python.html] and more!

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Programmatic Access

Programmatic access to the data and metadata is provided through a combination of ISB-CGC
APIs and Google APIs. The majority of the ISB-CGC data in BigQuery tables and in Google Cloud Storage is
accessed directly via Google Cloud tools and interfaces.
Access to ISB-CGC metadata and user-data such as cohort definitions is provided through
the ISB-CGC programmatic API described below.

A growing set of tutorials and programming examples illustrating how you can work with these
hosted data sets from a variety of
programming environments such as Python and R, using Google Compute Engine VMs
and the Google Genomics Pipelines (GGP) service
are provided in our github repositories, also described below.

	Computational System Model

	R, Python and SQL Tutorials

	Programmatic Interfaces

	Using Google Compute Engine

	Viewing and using cohorts in the Webapp and API

	Running Workflows

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Computational System Model

There are two primary ways in which users can interact with ISB-CGC data. The first method is
through graphical interfaces such as the ISB-CGC web application or the BigQuery web interface, which provides users a convenient web-based interface from which it is easy to create and visualize collections of data hosted by the ISB-CGC.

The second method is through the ISB-CGC programmatic API or through other Google Cloud APIs.
The ISB-CGC API provides access to much of the same computational functionality as the
web application, and the other Google APIs can be used to access the hosted data sets depending
on which technology is used to host them:

	the BigQuery Web UI [https://cloud.google.com/bigquery/web-ui-quickstart], Command-Line Tool [https://cloud.google.com/bigquery/bq-command-line-tool-quickstart], or REST API [https://cloud.google.com/bigquery/bigquery-api-quickstart] for the data stored in BigQuery tables;

	the Google Cloud Storage (GCS) JSON API [https://cloud.google.com/storage/docs/json_api/] or gsutil [https://cloud.google.com/storage/docs/gsutil] for the data stored in GCS objects; or

	the Genomics REST API [https://cloud.google.com/genomics/reference/rest/] for data stored in Google Genomics.

For users interested in performing custom analyses, accessing the data directly using these APIs
will provide greater flexibility.

Here are instructions on how to access BigQuery from the Google Cloud Platform.

Here are instructions on how to see ISB-CGC data through the BigQuery Web UI.

Here are examples of how to query ISB-CGC data using BigQuery, including using multiple tables with Joins.

The Cloud Paradigm

In addition to hosting the TCGA data in the cloud, one of the main goals of the ISB-CGC is to
“bring the computation to the data”. There are many ways that this can be done using legacy
tools, cloud-native tools, or a combination of the two. Regardless of the details of the particular
solution, the single most important difference between the ISB-CGC computational system model
and traditional HPC models is that there is no single monolithic system that is
doing the computational work. Cloud-native solutions instead abstract the configuration
management process from the allocation of physical hardware, making it very easy to
programmatically request an arbitrary number of identical machines, which can then be easily
“torn down” (and regenerated) whenever necessary. The configuration state of these machines
will always be identical on startup, and can be parametrized according to your algorithm’s
resource needs.

One important implication to understand about this new computational paradigm is that the burden
of system administration is partially shifted to the users of the cloud: researchers and developers.
While numerous tools exist to help simplify these tasks, there is no IT department managing your
cloud-computing. This means that researchers will need to learn a new skill-set.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

R, Python and SQL Tutorials

For ISB-CGC users who want to perform custom analyses by writing R or Python scripts,
we have begun to assemble a set of examples in two public github
repositories: examples-Python [https://github.com/isb-cgc/examples-Python]
and examples-R [https://github.com/isb-cgc/examples-R]. R users can
work from the familiar environment of RStudio [https://www.rstudio.com/],
and Python programmers can
enjoy the richness available in IPython notebooks by taking advantage of
the newly released Cloud Datalab [https://cloud.google.com/datalab/]

Note: That Cloud Datalab is a beta release, but Google has released documentation on how to install Cloud Datalab locally here [https://cloud.google.com/datalab/docs/quickstarts/quickstart-local] and how to Run Cloud Datalab notebooks on Google Cloud Platform here [https://cloud.google.com/datalab/docs/quickstarts/quickstart-gce-frontend] .

These repositories contain numerous examples that will help you learn
to access and analyze the TCGA data in BigQuery, as well as examples
showing how to use our APIs to query the metadata and discover where to find the data
that you are looking for in Google Cloud Storage.

In addition there is the Query of the Month Club [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/QueryOfTheMonthClub.html?highlight=query%20of%20the%20month] where there are multiple examples of using SQL queries to analyze the data housed in BigQuery.

We encourage the community to provide feedback on these tutorials and also to
add your own examples to enrich this public resource!

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Programmatic Interfaces

The changes needed to support multiple programs have rendered the V1 and V2 APIs non-functional
and therefore users must migrage all API calls to the V3 version. Note that this usually means
just a minor adjustment to the URL. Also note that some of the examples in the github repository
may still reference the V1 or V2 API.

Programmatic access to molecular data and metadata within the ISB-CGC platform
uses a combination of ISB-CGC APIs and Google APIs, as illustrated by the
block diagram [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/_images/new-block-three-p.png]
on the front page of this documentation.

	The ISB-CGC API provides programmatic access to data and metadata stored in CloudSQL. This includes information describing TCGA patients and samples, data availability, user-created cohorts, etc. In this section of our documentation, you will find more details about using the ISB-CGC API.

	Native Google APIs are used for optimized, high-speed programmatic access to molecular data in BigQuery, Google Cloud Storage, or Google Genomics. Code examples illustrating usage of these Google APIs are available in the ISB-CGC code repositories [https://github.com/isb-cgc] on github. Additional Google Cloud Platform Documentation [https://cloud.google.com/docs/] for some of the key technologies leveraged by the ISB-CGC platform can be found by following these links:

	BigQuery APIs & Reference [https://cloud.google.com/bigquery/docs/apis]

	Cloud Storage APIs & Reference [https://cloud.google.com/storage/docs/apis]

	Genomics API Overview [https://cloud.google.com/genomics/reference/]

ISB-CGC API

The ISB-CGC API provides an interface to the ISB-CGC metadata stored in CloudSQL,
and consists of several “endpoints”, implemented using Google Cloud Endpoints.
Details about these endpoints can be found here,
and examples illustrating usage from R and Python can be found in
our examples-R [https://github.com/isb-cgc/examples-R] and
examples-Python [https://github.com/isb-cgc/examples-Python/tree/master/python] repositories on github.

Some example use-cases include:

	obtaining a list of patient identifiers based on a defined set of criteria;

	obtaining a list of sample identifiers, associated with a specific patient;

	obtaining detailed metadata about a particular patient or sample;

	creating (or retrieving a previously saved) cohort of patients and samples, based on a defined set of criteria;

	obtaining a list of data files in Cloud Storage, associated with a specific sample, cohort, platform, or data-type (or any combination thereof);

The APIs Explorer [https://apis-explorer.appspot.com/apis-explorer/?base=https://api-dot-isb-cgc.appspot.com/_ah/api#p/]
can be used to see details about each endpoint, and also provides a convenient interface
to test an endpoint through your web browser.
Following the link in the previous sentence will take you to a page with a list of APIs, in which each
API consists of a set of functionally-related endpoints. Together, these individual APIs make up the ISB-CGC API.
(Note that not all of these APIs are intended for direct use by end-users:
some are intended for use only by the ISB-CGC Web-App, as described in the information on the
first APIs Explorer page mentioned above.)

Cohorts are the primary organizing principle for subsetting and working with the TCGA data.
A cohort is a list of samples and a list of patients.
Users may create and share cohorts using the ISB-CGC web-app and then programmatically
access these cohorts using this API.
(TCGA samples are identified using a
16-character “barcode” eg TCGA-B9-7268-01A,
while patients are identified using the 12-character prefix, ie TCGA-B9-7268, of the sample barcode.
Other datasets such as CCLE may use other less standardized naming conventions).

Usage

Endpoints are simple https GET or PUT requests, eg:

V3 TCGA - GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cases/TCGA-B9-7268
V3 TARGET - GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/cases/TARGET-20-PABLDZ
V3 CCLE - GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cases/FU-OV-1

V1 (deprecated) - GET https://api-dot-isb-cgc.appspot.com/_ah/api/cohort_api/v1/patient_details?patient_barcode=TCGA-B9-7268
V2 (deprecated) - GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v2/patients/TCGA-B9-7268

The first three GET commands above illustrates the usage with the new program-specific V3 endpoints. The V1 and V2 examples are presented so users can see the difference in calls and aid in the transition to V3.

The url (without the “GET” command) can also be pasted directly into your browser, like
this [https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cases/TCGA-B9-7268]
or this [https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cases/FU-OV-1].
Packages are available in most languages to allow you to easily perform https GET and PUT requests, such as the
httr [https://cran.r-project.org/web/packages/httr/index.html] package for R,
and the Python requests [http://docs.python-requests.org/en/master/] library.

In addition, the
Google Python API Client Library [https://developers.google.com/api-client-library/python/]
can be used to build a service object which provides a functional interface to the resources defined by the API.
(Examples of this approach can be found in the examples-Python github repo, specifically the
api_test_service*.py scripts.)

Authorization

Some, but not all, of the endpoints require authorization. This authorization is not related to
controlled-access data: these endpoints do not operate on or directly return any controlled data.
Instead, authorization is related to saving or retrieving cohorts because cohorts are private to
the user who created the cohort (and anyone the cohort owner has chosen to share the cohort with).
Helper scripts, described below, are provided to access these endpoints from the command line.

Note: Prior to using any endpoints that require authorization, a user must have signed into the
web application [https://isb-cgc.appspot.com/] at least once.

Examples

from Python

Step 1: A python helper-script,
isb_auth.py [https://github.com/isb-cgc/ISB-CGC-Webapp/blob/master/scripts/isb_auth.py],
can be used to start the OAuth flow and store the users credentials in a file named ~/.isb_credentials

$ python isb_auth.py

This script will open a new tab in your browser and ask you to sign in with your google identity
(eg your gmail address). The first time, you will also be asked to grant the ISB-CGC application
permission to see your email address.
Once authenticated, your access and refresh tokens are written to
~/.isb_credentials. You may use the --verbose flag when running this script
to see the contents and name of this file.

If you are running this script via ssh (or from Cloud Shell),
the --noauth_local_webserver flag will allow you to obtain a verification code through your local browser.

Step 2: Once you have a ~/.isb_credentials file
(either locally on your laptop, or on a GCE VM, or in Cloud Shell),
you can access any API requiring authentication using another helper-script,
isb_curl.py [https://github.com/isb-cgc/ISB-CGC-Webapp/blob/master/scripts/isb_curl.py]

$ ## usage: python isb_curl.py {ENDPOINT_URL}
$ python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v2/cohorts

from R

The Examples-R [https://github.com/isb-cgc/examples-R] (ISBCGCExamples) package contains a number of functions that “wrap” the http endpoints calls, making it easier to access your cohorts and query the database.
(Note that these wrappers are currently based on the v1 endpoints and will soon be updated to
use the v2 endpoints.)

Step 1: After starting R, and loading the ISBCGCExamples, you can use the R helper script isb_init
to go through the authentication process:

> library(ISBCGCExamples)
> token <- isb_init()
Use a local file to cache OAuth access credentials between R sessions?
1: Yes
2: No

Selection: 1
Waiting for authentication in browser...
Press Esc/Ctrl + C to abort
Authentication complete.

The isb_init function will open a new tab in your browser and ask you to sign in with your google
identity (eg your gmail address). The first time, you will also be asked to grant the ISB-CGC
application permission to see your email address.
Once authenticated, your access and refresh tokens are written to your working directory in a
file named .httr-oauth.

Step 2: Using the endpoints

After authentication, any of the example endpoint functions can be used such as:

list_cohorts(token)

which returns a list of the user’s previously created cohorts.
Documentation for these functions can be found in the ISB-CGC github repo,
Examples-R [https://github.com/isb-cgc/examples-R] under ‘API Endpoints Interface’.

ISB-CGC API (v3)

The endpoints have been reorganized to support the multiple programs that now have data in the ISB-CGC. These endpoints are now organized into four different sections: TCGA, CCLE, TARGET and common endpoints.

Please Note: For the create.cohort API for all programs require the user to select inbetween the brackets to view the possible filter(s) for cohort being built.

Details for each of these enpoints can be found below:

Universal Endpoints

	cohorts().cloud_storage_file_paths()

	cohorts().delete()

	cohorts().get()

	cohorts().list()

TCGA Endpoints

	cohorts().preview()

	cohorts().create()

	cases().get()

	samples().cloud_storage_file_paths()

	samples().get()

	users().get()

	aliquots().annotations()

	cases().annotations()

	samples().annotations()

TARGET Endpoints

	cohorts().preview()

	cohorts().create()

	cases().get()

	samples().cloud_storage_file_paths()

	samples().get()

	users().get()

CCLE Endpoints

	cohorts().preview()

	cohorts().create()

	cases().get()

	samples().cloud_storage_file_paths()

	samples().get()

	users().get()

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().cloud_storage_file_paths()

Takes a cohort id as a required parameter and returns cloud storage paths to files associated with all the samples in that cohort, up to a default limit of 10,000 files. Authentication is required. User must have READER or OWNER permissions on the cohort.

Example:

python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts/{COHORT ID}/cloud_storage_file_paths

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_api/v3/isb_cgc_api.cohorts.cloud_storage_file_paths?cohort_id=1&limit=10&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
data = service.cohorts().cloud_storage_file_paths(cohort_id=1).execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts/{cohort_id}/cloud_storage_file_paths

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	cohort_id

	string

	Required.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	genomic_build

	string

	Optional.

	limit

	string

	Optional.

	platform

	string

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "cloud_storage_file_paths": [string],
 "count": integer
}

	Parameter name

	Value

	Description

	cloud_storage_file_paths[]

	list

	List of Google Cloud Storage paths of files associated with the cohort.

	count

	integer

	Number of Google Cloud Storage paths returned for the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().delete()

Deletes a cohort. User must have owner permissions on the cohort.

Example:

python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts/{COHORT ID} -X DELETE

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_api/v3/isb_cgc_api.cohorts.delete?cohort_id=COHORT%20ID%20HERE&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
data = service.cohorts().delete(cohort_id={YOUR_COHORT_ID}).execute()

Request

HTTP request:

DELETE https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts/{cohort_id}

Parameters

	Parameter name

	Value

	Description

	cohort_id

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "message": string
}

	Parameter name

	Value

	Description

	message

	string

	Indicates success or failure of cohort deletion.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().get()

Returns information about a specific cohort the user has READER or OWNER permission on when given a cohort ID. Authentication is required.

Example:

python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts/{COHORT ID}

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_api/v3/isb_cgc_api.cohorts.get?cohort_id=1&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
data = service.cohorts().get(cohort_id=1).execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts/{cohort_id}

Parameters

	Parameter name

	Value

	Description

	cohort_id

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "case_count": integer,
 "cases": [string],
 "comments": string,
 "email": string,
 "filters": [
 {
 "name": string,
 "value": string
 }
],
 "id": string,
 "last_date_saved": string,
 "name": string,
 "parent_id": [string],
 "permission": string,
 "sample_count": integer,
 "samples": [string],
 "source_notes": string,
 "source_type": string
}

	Parameter name

	Value

	Description

	case_count

	integer

	Total count of unique case barcodes in the cohort.

	cases[]

	list

	List of case barcodes in the cohort.

	comments

	string

	Comments on the cohort.

	email

	string

	Email of user.

	filters[]

	list

	List of filters applied to create cohort, if any.

	filters[].name

	string

	Names of filtering parameters used to create the cohort.

	filters[].value

	string

	Values of filtering parameters used to create the cohort.

	id

	string

	Cohort id.

	last_date_saved

	string

	Last date the cohort was saved.

	name

	string

	Name of the cohort

	parent_id[]

	list

	List of id’s of cohorts that this cohort was derived from, if any.

	permission

	string

	User permissions on cohort: READER or OWNER.

	sample_count

	integer

	Total count of unique sample barcodes in the cohort.

	samples[]

	list

	List of sample barcodes in the cohort.

	source_notes

	string

	Notes on the source of the cohort.

	source_type

	string

	Type of cohort source.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().list()

Returns information about cohorts a user has either READER or OWNER permission on. Authentication is required. Optionally takes a cohort id as a parameter to only list information about one cohort.

Example:

$ python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_api/v3/isb_cgc_api.cohorts.list?/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
data = service.cohorts().list().execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v3/cohorts

Parameters

None

Response

If successful, this method returns a response body with the following structure:

{
 "count": integer,
 "items": [
 {
 "case_count": integer,
 "cases": [string],
 "comments": string,
 "email": string,
 "filters": [
 {
 "name": string,
 "value": string
 }
],
 "id": string,
 "last_date_saved": string,
 "name": string,
 "parent_id": [string],
 "permission": string,
 "sample_count": integer,
 "samples": [string],
 "source_notes": string,
 "source_type": string
 }
]
}

	Parameter name

	Value

	Description

	count

	integer

	Number of cohorts the user has OWNER or READER permission on.

	items[]

	list

	List of details about each cohort.

	items[].case_count

	integer

	Total count of unique case barcodes in the cohort.

	items[].cases[]

	list

	List of case barcodes in the cohort.

	items[].comments

	string

	Comments on the cohort.

	items[].email

	string

	Email of user.

	items[].filters[]

	list

	List of filters applied to create cohort, if any.

	items[].filters[].name

	string

	Names of filtering parameters used to create the cohort.

	items[].filters[].value

	string

	Values of filtering parameters used to create the cohort.

	items[].id

	string

	Cohort id.

	items[].last_date_saved

	string

	Last date the cohort was saved.

	items[].name

	string

	Name of the cohort

	items[].parent_id[]

	list

	List of id’s of cohorts that this cohort was derived from, if any.

	items[].permission

	string

	User permissions on cohort: READER or OWNER.

	items[].sample_count

	integer

	Total count of unique sample barcodes in the cohort.

	items[].samples[]

	list

	List of sample barcodes in the cohort.

	items[].source_notes

	string

	Notes on the source of the cohort.

	items[].source_type

	string

	Type of cohort source.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().preview()

Takes a JSON object of filters in the request body and returns a “preview” of the cohort that would result from passing a similar request to the cohort save endpoint. This preview consists of two lists: the lists of case barcodes, and the list of sample barcodes. Authentication is not required.

Example:

curl "https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/preview?program_short_name=TCGA-UCS&program_short_name=TCGA-CESC&age_at_diagnosis_lte=20"

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.cohorts.preview?resource=%257B%250A++%2522program_short_name%2522%253A+%250A++%255B%2522TCGA-BRCA%2522%252C%2522TCGA-UCS%2522%250A++%255D%252C%250A++%2522age_at_diagnosis_lte%2522%253A+%252230%2522%250A%257D&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
body = {'program_short_name': ['TCGA-BRCA', 'TCGA-UCS'], 'age_at_diagnosis_gte': 90}
data = service.cohorts().preview(**body).execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/preview

Parameters

	Parameter name

	Value

	Description

	age_at_diagnosis

	integer

	Optional.

	age_at_diagnosis_gte

	integer

	Optional.

	age_at_diagnosis_lte

	integer

	Optional.

	age_began_smoking_in_years

	integer

	Optional.

	age_began_smoking_in_years_gte

	integer

	Optional.

	age_began_smoking_in_years_lte

	integer

	Optional.

	anatomic_neoplasm_subdivision

	string

	Optional.

	avg_percent_lymphocyte_infiltration

	number

	Optional.

	avg_percent_lymphocyte_infiltration_gte

	number

	Optional.

	avg_percent_lymphocyte_infiltration_lte

	number

	Optional.

	avg_percent_monocyte_infiltration

	number

	Optional.

	avg_percent_monocyte_infiltration_gte

	number

	Optional.

	avg_percent_monocyte_infiltration_lte

	number

	Optional.

	avg_percent_necrosis

	number

	Optional.

	avg_percent_necrosis_gte

	number

	Optional.

	avg_percent_necrosis_lte

	number

	Optional.

	avg_percent_neutrophil_infiltration

	number

	Optional.

	avg_percent_neutrophil_infiltration_gte

	number

	Optional.

	avg_percent_neutrophil_infiltration_lte

	number

	Optional.

	avg_percent_normal_cells

	number

	Optional.

	avg_percent_normal_cells_gte

	number

	Optional.

	avg_percent_normal_cells_lte

	number

	Optional.

	avg_percent_stromal_cells

	number

	Optional.

	avg_percent_stromal_cells_gte

	number

	Optional.

	avg_percent_stromal_cells_lte

	number

	Optional.

	avg_percent_tumor_cells

	number

	Optional.

	avg_percent_tumor_cells_gte

	number

	Optional.

	avg_percent_tumor_cells_lte

	number

	Optional.

	avg_percent_tumor_nuclei

	number

	Optional.

	avg_percent_tumor_nuclei_gte

	number

	Optional.

	avg_percent_tumor_nuclei_lte

	number

	Optional.

	batch_number

	integer

	Optional.

	batch_number_gte

	integer

	Optional.

	batch_number_lte

	integer

	Optional.

	bcr

	string

	Optional.

	bmi

	number

	Optional.

	bmi_gte

	number

	Optional.

	bmi_lte

	number

	Optional.

	case_barcode

	string

	Optional.

	case_gdc_id

	string

	Optional.

	clinical_M

	string

	Optional.

	clinical_N

	string

	Optional.

	clinical_stage

	string

	Optional.

	clinical_T

	string

	Optional.

	colorectal_cancer

	string

	Optional.

	country

	string

	Optional.

	days_to_birth

	integer

	Optional.

	days_to_birth_gte

	integer

	Optional.

	days_to_birth_lte

	integer

	Optional.

	days_to_collection

	integer

	Optional.

	days_to_collection_gte

	integer

	Optional.

	days_to_collection_lte

	integer

	Optional.

	days_to_death

	integer

	Optional.

	days_to_death_gte

	integer

	Optional.

	days_to_death_lte

	integer

	Optional.

	days_to_initial_pathologic_diagnosis

	integer

	Optional.

	days_to_initial_pathologic_diagnosis_gte

	integer

	Optional.

	days_to_initial_pathologic_diagnosis_lte

	integer

	Optional.

	days_to_last_followup

	integer

	Optional.

	days_to_last_followup_gte

	integer

	Optional.

	days_to_last_followup_lte

	integer

	Optional.

	days_to_last_known_alive

	integer

	Optional.

	days_to_last_known_alive_gte

	integer

	Optional.

	days_to_last_known_alive_lte

	integer

	Optional.

	days_to_sample_procurement

	integer

	Optional.

	days_to_sample_procurement_gte

	integer

	Optional.

	days_to_sample_procurement_lte

	integer

	Optional.

	days_to_submitted_specimen_dx

	integer

	Optional.

	days_to_submitted_specimen_dx_gte

	integer

	Optional.

	days_to_submitted_specimen_dx_lte

	integer

	Optional.

	disease_code

	string

	Optional.

	endpoint_type

	string

	Optional.

	ethnicity

	string

	Optional.

	gender

	string

	Optional.

	gleason_score_combined

	integer

	Optional.

	gleason_score_combined_gte

	integer

	Optional.

	gleason_score_combined_lte

	integer

	Optional.

	h_pylori_infection

	string

	Optional.

	height

	integer

	Optional.

	height_gte

	integer

	Optional.

	height_lte

	integer

	Optional.

	histological_type

	string

	Optional.

	history_of_colon_polyps

	string

	Optional.

	history_of_neoadjuvant_treatment

	string

	Optional.

	hpv_calls

	string

	Optional.

	hpv_status

	string

	Optional.

	icd_10

	string

	Optional.

	icd_o_3_histology

	string

	Optional.

	icd_o_3_site

	string

	Optional.

	lymphatic_invasion

	string

	Optional.

	lymphnodes_examined

	string

	Optional.

	lymphovascular_invasion_present

	string

	Optional.

	max_percent_lymphocyte_infiltration

	number

	Optional.

	max_percent_lymphocyte_infiltration_gte

	number

	Optional.

	max_percent_lymphocyte_infiltration_lte

	number

	Optional.

	max_percent_monocyte_infiltration

	number

	Optional.

	max_percent_monocyte_infiltration_gte

	number

	Optional.

	max_percent_monocyte_infiltration_lte

	number

	Optional.

	max_percent_necrosis

	number

	Optional.

	max_percent_necrosis_gte

	number

	Optional.

	max_percent_necrosis_lte

	number

	Optional.

	max_percent_neutrophil_infiltration

	number

	Optional.

	max_percent_neutrophil_infiltration_gte

	number

	Optional.

	max_percent_neutrophil_infiltration_lte

	number

	Optional.

	max_percent_normal_cells

	number

	Optional.

	max_percent_normal_cells_gte

	number

	Optional.

	max_percent_normal_cells_lte

	number

	Optional.

	max_percent_stromal_cells

	number

	Optional.

	max_percent_stromal_cells_gte

	number

	Optional.

	max_percent_stromal_cells_lte

	number

	Optional.

	max_percent_tumor_cells

	number

	Optional.

	max_percent_tumor_cells_gte

	number

	Optional.

	max_percent_tumor_cells_lte

	number

	Optional.

	max_percent_tumor_nuclei

	number

	Optional.

	max_percent_tumor_nuclei_gte

	number

	Optional.

	max_percent_tumor_nuclei_lte

	number

	Optional.

	menopause_status

	string

	Optional.

	min_percent_lymphocyte_infiltration

	number

	Optional.

	min_percent_lymphocyte_infiltration_gte

	number

	Optional.

	min_percent_lymphocyte_infiltration_lte

	number

	Optional.

	min_percent_monocyte_infiltration

	number

	Optional.

	min_percent_monocyte_infiltration_gte

	number

	Optional.

	min_percent_monocyte_infiltration_lte

	number

	Optional.

	min_percent_necrosis

	number

	Optional.

	min_percent_necrosis_gte

	number

	Optional.

	min_percent_necrosis_lte

	number

	Optional.

	min_percent_neutrophil_infiltration

	number

	Optional.

	min_percent_neutrophil_infiltration_gte

	number

	Optional.

	min_percent_neutrophil_infiltration_lte

	number

	Optional.

	min_percent_normal_cells

	number

	Optional.

	min_percent_normal_cells_gte

	number

	Optional.

	min_percent_normal_cells_lte

	number

	Optional.

	min_percent_stromal_cells

	number

	Optional.

	min_percent_stromal_cells_gte

	number

	Optional.

	min_percent_stromal_cells_lte

	number

	Optional.

	min_percent_tumor_cells

	number

	Optional.

	min_percent_tumor_cells_gte

	number

	Optional.

	min_percent_tumor_cells_lte

	number

	Optional.

	min_percent_tumor_nuclei

	number

	Optional.

	min_percent_tumor_nuclei_gte

	number

	Optional.

	min_percent_tumor_nuclei_lte

	number

	Optional.

	mononucleotide_and_dinucleotide_marker_panel_analysis_status

	string

	Optional.

	neoplasm_histologic_grade

	string

	Optional.

	new_tumor_event_after_initial_treatment

	string

	Optional.

	num_portions

	integer

	Optional.

	num_portions_gte

	integer

	Optional.

	num_portions_lte

	integer

	Optional.

	num_slides

	integer

	Optional.

	num_slides_gte

	integer

	Optional.

	num_slides_lte

	integer

	Optional.

	number_of_lymphnodes_examined

	integer

	Optional.

	number_of_lymphnodes_examined_gte

	integer

	Optional.

	number_of_lymphnodes_examined_lte

	integer

	Optional.

	number_of_lymphnodes_positive_by_he

	integer

	Optional.

	number_of_lymphnodes_positive_by_he_gte

	integer

	Optional.

	number_of_lymphnodes_positive_by_he_lte

	integer

	Optional.

	number_pack_years_smoked

	integer

	Optional.

	number_pack_years_smoked_gte

	integer

	Optional.

	number_pack_years_smoked_lte

	integer

	Optional.

	other_dx

	string

	Optional.

	other_malignancy_anatomic_site

	string

	Optional.

	other_malignancy_histological_type

	string

	Optional.

	other_malignancy_type

	string

	Optional.

	pathologic_M

	string

	Optional.

	pathologic_N

	string

	Optional.

	pathologic_stage

	string

	Optional.

	pathologic_T

	string

	Optional.

	pathology_report_uuid

	string

	Optional.

	person_neoplasm_cancer_status

	string

	Optional.

	pregnancies

	string

	Optional.

	preservation_method

	string

	Optional.

	primary_neoplasm_melanoma_dx

	string

	Optional.

	primary_therapy_outcome_success

	string

	Optional.

	program_name

	string

	Optional.

	project_short_name

	string

	Optional.

	psa_value

	number

	Optional.

	psa_value_gte

	number

	Optional.

	psa_value_lte

	number

	Optional.

	race

	string

	Optional.

	residual_tumor

	string

	Optional.

	sample_barcode

	string

	Optional.

	sample_gdc_id

	string

	Optional.

	sample_type

	string

	Optional.

	stopped_smoking_year

	integer

	Optional.

	stopped_smoking_year_gte

	integer

	Optional.

	stopped_smoking_year_lte

	integer

	Optional.

	summary_file_count

	integer

	Optional.

	summary_file_count_gte

	integer

	Optional.

	summary_file_count_lte

	integer

	Optional.

	tobacco_smoking_history

	string

	Optional.

	tss_code

	string

	Optional.

	tumor_tissue_site

	string

	Optional.

	tumor_type

	string

	Optional.

	venous_invasion

	string

	Optional.

	vital_status

	string

	Optional.

	weight

	integer

	Optional.

	weight_gte

	integer

	Optional.

	weight_lte

	integer

	Optional.

	year_of_diagnosis

	integer

	Optional.

	year_of_diagnosis_gte

	integer

	Optional.

	year_of_diagnosis_lte

	integer

	Optional.

	year_of_tobacco_smoking_onset

	integer

	Optional.

	year_of_tobacco_smoking_onset_gte

	integer

	Optional.

	year_of_tobacco_smoking_onset_lte

	integer

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "case_count": integer,
 "cases": [string],
 "sample_count": integer,
 "samples": [string]
}

	Parameter name

	Value

	Description

	case_count

	integer

	Number of cases in the cohort.

	cases[]

	list

	List of cases barcodes in the cohort.

	sample_count

	integer

	Number of samples in the cohort.

	samples[]

	list

	List of sample barcodes in the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().create()

Creates and saves a cohort. Takes a JSON object in the request body to use as the cohort’s filters. Authentication is required. Returns information about the saved cohort, including the number of cases and the number of samples in that cohort.

Example:

python isb_curl.py "https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/create?name={COHORT NAME}" -H "Content-Type: application/json" -d '{"program_short_name": ["TCGA-UCS", "TCGA-CESC"], "age_at_diagnosis_lte": 60}'

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.cohorts.create?name=COHORT%20NAME%20HERE&resource=%257B%250A++%2522Study%2522%253A+%250A++%255B%2522UCS%2522%250A++%255D%250A%257D&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
body = {'program_short_name': ['TCGA-BRCA', 'TCGA-UCS'], 'age_at_diagnosis_gte': 90}
data = service.cohorts().create(name=name, body=body).execute()

Request

HTTP request:

POST https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/create

Parameters

	Parameter name

	Value

	Description

	name

	string

	Required.

Request body

In the request body, supply a metadata resource with the following properties:

{
 "age_at_diagnosis": [integer],
 "age_at_diagnosis_gte": integer,
 "age_at_diagnosis_lte": integer,
 "age_began_smoking_in_years": [integer],
 "age_began_smoking_in_years_gte": integer,
 "age_began_smoking_in_years_lte": integer,
 "anatomic_neoplasm_subdivision": [string],
 "avg_percent_lymphocyte_infiltration": [number],
 "avg_percent_lymphocyte_infiltration_gte": number,
 "avg_percent_lymphocyte_infiltration_lte": number,
 "avg_percent_monocyte_infiltration": [number],
 "avg_percent_monocyte_infiltration_gte": number,
 "avg_percent_monocyte_infiltration_lte": number,
 "avg_percent_necrosis": [number],
 "avg_percent_necrosis_gte": number,
 "avg_percent_necrosis_lte": number,
 "avg_percent_neutrophil_infiltration": [number],
 "avg_percent_neutrophil_infiltration_gte": number,
 "avg_percent_neutrophil_infiltration_lte": number,
 "avg_percent_normal_cells": [number],
 "avg_percent_normal_cells_gte": number,
 "avg_percent_normal_cells_lte": number,
 "avg_percent_stromal_cells": [number],
 "avg_percent_stromal_cells_gte": number,
 "avg_percent_stromal_cells_lte": number,
 "avg_percent_tumor_cells": [number],
 "avg_percent_tumor_cells_gte": number,
 "avg_percent_tumor_cells_lte": number,
 "avg_percent_tumor_nuclei": [number],
 "avg_percent_tumor_nuclei_gte": number,
 "avg_percent_tumor_nuclei_lte": number,
 "batch_number": [integer],
 "batch_number_gte": integer,
 "batch_number_lte": integer,
 "bcr": [string],
 "bmi": [number],
 "bmi_gte": number,
 "bmi_lte": number,
 "case_barcode": [string],
 "case_gdc_id": [string],
 "clinical_M": [string],
 "clinical_N": [string],
 "clinical_stage": [string],
 "clinical_T": [string],
 "colorectal_cancer": [string],
 "country": [string],
 "days_to_birth": [integer],
 "days_to_birth_gte": integer,
 "days_to_birth_lte": integer,
 "days_to_collection": [integer],
 "days_to_collection_gte": integer,
 "days_to_collection_lte": integer,
 "days_to_death": [integer],
 "days_to_death_gte": integer,
 "days_to_death_lte": integer,
 "days_to_initial_pathologic_diagnosis": [integer],
 "days_to_initial_pathologic_diagnosis_gte": integer,
 "days_to_initial_pathologic_diagnosis_lte": integer,
 "days_to_last_followup": [integer],
 "days_to_last_followup_gte": integer,
 "days_to_last_followup_lte": integer,
 "days_to_last_known_alive": [integer],
 "days_to_last_known_alive_gte": integer,
 "days_to_last_known_alive_lte": integer,
 "days_to_sample_procurement": [integer],
 "days_to_sample_procurement_gte": integer,
 "days_to_sample_procurement_lte": integer,
 "days_to_submitted_specimen_dx": [integer],
 "days_to_submitted_specimen_dx_gte": integer,
 "days_to_submitted_specimen_dx_lte": integer,
 "disease_code": [string],
 "endpoint_type": [string],
 "ethnicity": [string],
 "gender": [string],
 "gleason_score_combined": [integer],
 "gleason_score_combined_gte": integer,
 "gleason_score_combined_lte": integer,
 "h_pylori_infection": [string],
 "height": [integer],
 "height_gte": integer,
 "height_lte": integer,
 "histological_type": [string],
 "history_of_colon_polyps": [string],
 "history_of_neoadjuvant_treatment": [string],
 "hpv_calls": [string],
 "hpv_status": [string],
 "icd_10": [string],
 "icd_o_3_histology": [string],
 "icd_o_3_site": [string],
 "lymphatic_invasion": [string],
 "lymphnodes_examined": [string],
 "lymphovascular_invasion_present": [string],
 "max_percent_lymphocyte_infiltration": [number],
 "max_percent_lymphocyte_infiltration_gte": number,
 "max_percent_lymphocyte_infiltration_lte": number,
 "max_percent_monocyte_infiltration": [number],
 "max_percent_monocyte_infiltration_gte": number,
 "max_percent_monocyte_infiltration_lte": number,
 "max_percent_necrosis": [number],
 "max_percent_necrosis_gte": number,
 "max_percent_necrosis_lte": number,
 "max_percent_neutrophil_infiltration": [number],
 "max_percent_neutrophil_infiltration_gte": number,
 "max_percent_neutrophil_infiltration_lte": number,
 "max_percent_normal_cells": [number],
 "max_percent_normal_cells_gte": number,
 "max_percent_normal_cells_lte": number,
 "max_percent_stromal_cells": [number],
 "max_percent_stromal_cells_gte": number,
 "max_percent_stromal_cells_lte": number,
 "max_percent_tumor_cells": [number],
 "max_percent_tumor_cells_gte": number,
 "max_percent_tumor_cells_lte": number,
 "max_percent_tumor_nuclei": [number],
 "max_percent_tumor_nuclei_gte": number,
 "max_percent_tumor_nuclei_lte": number,
 "menopause_status": [string],
 "min_percent_lymphocyte_infiltration": [number],
 "min_percent_lymphocyte_infiltration_gte": number,
 "min_percent_lymphocyte_infiltration_lte": number,
 "min_percent_monocyte_infiltration": [number],
 "min_percent_monocyte_infiltration_gte": number,
 "min_percent_monocyte_infiltration_lte": number,
 "min_percent_necrosis": [number],
 "min_percent_necrosis_gte": number,
 "min_percent_necrosis_lte": number,
 "min_percent_neutrophil_infiltration": [number],
 "min_percent_neutrophil_infiltration_gte": number,
 "min_percent_neutrophil_infiltration_lte": number,
 "min_percent_normal_cells": [number],
 "min_percent_normal_cells_gte": number,
 "min_percent_normal_cells_lte": number,
 "min_percent_stromal_cells": [number],
 "min_percent_stromal_cells_gte": number,
 "min_percent_stromal_cells_lte": number,
 "min_percent_tumor_cells": [number],
 "min_percent_tumor_cells_gte": number,
 "min_percent_tumor_cells_lte": number,
 "min_percent_tumor_nuclei": [number],
 "min_percent_tumor_nuclei_gte": number,
 "min_percent_tumor_nuclei_lte": number,
 "mononucleotide_and_dinucleotide_marker_panel_analysis_status": [string],
 "neoplasm_histologic_grade": [string],
 "new_tumor_event_after_initial_treatment": [string],
 "num_portions": [integer],
 "num_portions_gte": integer,
 "num_portions_lte": integer,
 "num_slides": [integer],
 "num_slides_gte": integer,
 "num_slides_lte": integer,
 "number_of_lymphnodes_examined": [integer],
 "number_of_lymphnodes_examined_gte": integer,
 "number_of_lymphnodes_examined_lte": integer,
 "number_of_lymphnodes_positive_by_he": [integer],
 "number_of_lymphnodes_positive_by_he_gte": integer,
 "number_of_lymphnodes_positive_by_he_lte": integer,
 "number_pack_years_smoked": [integer],
 "number_pack_years_smoked_gte": integer,
 "number_pack_years_smoked_lte": integer,
 "other_dx": [string],
 "other_malignancy_anatomic_site": [string],
 "other_malignancy_histological_type": [string],
 "other_malignancy_type": [string],
 "pathologic_M": [string],
 "pathologic_N": [string],
 "pathologic_stage": [string],
 "pathologic_T": [string],
 "pathology_report_uuid": [string],
 "person_neoplasm_cancer_status": [string],
 "pregnancies": [string],
 "preservation_method": [string],
 "primary_neoplasm_melanoma_dx": [string],
 "primary_therapy_outcome_success": [string],
 "program_name": [string],
 "project_short_name": [string],
 "psa_value": [number],
 "psa_value_gte": number,
 "psa_value_lte": number,
 "race": [string],
 "residual_tumor": [string],
 "sample_barcode": [string],
 "sample_gdc_id": [string],
 "sample_type": [string],
 "stopped_smoking_year": [integer],
 "stopped_smoking_year_gte": integer,
 "stopped_smoking_year_lte": integer,
 "summary_file_count": [integer],
 "summary_file_count_gte": integer,
 "summary_file_count_lte": integer,
 "tobacco_smoking_history": [string],
 "tss_code": [string],
 "tumor_tissue_site": [string],
 "tumor_type": [string],
 "venous_invasion": [string],
 "vital_status": [string],
 "weight": [integer],
 "weight_gte": integer,
 "weight_lte": integer,
 "year_of_diagnosis": [integer],
 "year_of_diagnosis_gte": integer,
 "year_of_diagnosis_lte": integer,
 "year_of_tobacco_smoking_onset": [integer],
 "year_of_tobacco_smoking_onset_gte": integer,
 "year_of_tobacco_smoking_onset_lte": integer
}

	Parameter name

	Value

	Description

	age_at_diagnosis[]

	list

	Optional.

	age_at_diagnosis_gte

	integer

	Optional.

	age_at_diagnosis_lte

	integer

	Optional.

	age_began_smoking_in_years[]

	list

	Optional.

	age_began_smoking_in_years_gte

	integer

	Optional.

	age_began_smoking_in_years_lte

	integer

	Optional.

	anatomic_neoplasm_subdivision[]

	list

	Optional. Possible values include: ‘Alveolar Ridge’, ‘Antrum/Distal’, ‘Ascending Colon’, ‘Base of tongue’, ‘Bilateral’, ‘Bladder - NOS’, ‘Body of Pancreas’, ‘Bronchial’, ‘Buccal Mucosa’, ‘Cardia/Proximal’, ‘Cecum’, ‘Descending Colon’, ‘Dome’, ‘Endometrium’, ‘Floor of mouth’, ‘Fundus uteri’, ‘Fundus/Body’, ‘Gastroesophageal Junction’, ‘Hard Palate’, ‘Head of Pancreas’, ‘Hepatic Flexure’, ‘Hypopharynx’, ‘L-Lower’, ‘L-Upper’, ‘Larynx’, ‘Left’, ‘Left Lower Inner Quadrant’, ‘Left Lower Outer Quadrant’, ‘Left Upper Inner Quadrant’, ‘Left Upper Outer Quadrant’, ‘Lip’, ‘Lower uterine segment/Isthmus uteri’, ‘Myometrium’, ‘Neck’, ‘Oral Cavity’, ‘Oral Tongue’, ‘Oropharynx’, ‘Other (please specify)’, ‘R-Lower’, ‘R-Middle’, ‘R-Upper’, ‘Rectosigmoid Junction’, ‘Rectum’, ‘Right’, ‘Right Lower Inner Quadrant’, ‘Right Lower Outer Quadrant’, ‘Right Upper Inner Quadrant’, ‘Right Upper Outer Quadrant’, ‘Sigmoid Colon’, ‘Splenic Flexure’, ‘Stomach (NOS)’, ‘Tail of Pancreas’, ‘Tonsil’, ‘Transverse Colon’, ‘Trigone’, ‘Unknown - Uterus NOS’, ‘Wall Anterior’, ‘Wall Lateral’, ‘Wall NOS’, ‘Wall Posterior’.

	avg_percent_lymphocyte_infiltration[]

	list

	Optional.

	avg_percent_lymphocyte_infiltration_gte

	number

	Optional.

	avg_percent_lymphocyte_infiltration_lte

	number

	Optional.

	avg_percent_monocyte_infiltration[]

	list

	Optional.

	avg_percent_monocyte_infiltration_gte

	number

	Optional.

	avg_percent_monocyte_infiltration_lte

	number

	Optional.

	avg_percent_necrosis[]

	list

	Optional.

	avg_percent_necrosis_gte

	number

	Optional.

	avg_percent_necrosis_lte

	number

	Optional.

	avg_percent_neutrophil_infiltration[]

	list

	Optional.

	avg_percent_neutrophil_infiltration_gte

	number

	Optional.

	avg_percent_neutrophil_infiltration_lte

	number

	Optional.

	avg_percent_normal_cells[]

	list

	Optional.

	avg_percent_normal_cells_gte

	number

	Optional.

	avg_percent_normal_cells_lte

	number

	Optional.

	avg_percent_stromal_cells[]

	list

	Optional.

	avg_percent_stromal_cells_gte

	number

	Optional.

	avg_percent_stromal_cells_lte

	number

	Optional.

	avg_percent_tumor_cells[]

	list

	Optional.

	avg_percent_tumor_cells_gte

	number

	Optional.

	avg_percent_tumor_cells_lte

	number

	Optional.

	avg_percent_tumor_nuclei[]

	list

	Optional.

	avg_percent_tumor_nuclei_gte

	number

	Optional.

	avg_percent_tumor_nuclei_lte

	number

	Optional.

	batch_number[]

	list

	Optional.

	batch_number_gte

	integer

	Optional.

	batch_number_lte

	integer

	Optional.

	bcr[]

	list

	Optional. Possible values include: ‘Nationwide Children’s Hospital’, ‘Washington University’.

	bmi[]

	list

	Optional.

	bmi_gte

	number

	Optional.

	bmi_lte

	number

	Optional.

	case_barcode[]

	list

	Optional.

	case_gdc_id[]

	list

	Optional.

	clinical_M[]

	list

	Optional. Possible values include: ‘M0’, ‘M1’, ‘M1a’, ‘M1b’, ‘M1c’, ‘MX’.

	clinical_N[]

	list

	Optional. Possible values include: ‘N0’, ‘N1’, ‘N2’, ‘N2a’, ‘N2b’, ‘N2c’, ‘N3’, ‘NX’.

	clinical_stage[]

	list

	Optional. Possible values include: ‘Stage I’, ‘Stage IA’, ‘Stage IA1’, ‘Stage IA2’, ‘Stage IB’, ‘Stage IB1’, ‘Stage IB2’, ‘Stage IC’, ‘Stage II’, ‘Stage IIA’, ‘Stage IIA1’, ‘Stage IIA2’, ‘Stage IIB’, ‘Stage IIC’, ‘Stage III’, ‘Stage IIIA’, ‘Stage IIIB’, ‘Stage IIIC’, ‘Stage IIIC1’, ‘Stage IIIC2’, ‘Stage IS’, ‘Stage IV’, ‘Stage IVA’, ‘Stage IVB’, ‘Stage IVC’.

	clinical_T[]

	list

	Optional. Possible values include: ‘T1’, ‘T1a’, ‘T1b’, ‘T1c’, ‘T2’, ‘T2a’, ‘T2b’, ‘T2c’, ‘T3’, ‘T3a’, ‘T3b’, ‘T4’, ‘T4a’, ‘T4b’, ‘T4c’, ‘T4d’, ‘T4e’, ‘TX’.

	colorectal_cancer[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	country[]

	list

	Optional. Possible values include: ‘Afghanistan’, ‘Algeria’, ‘American Samoa’, ‘Australia’, ‘Brazil’, ‘Bulgaria’, ‘Canada’, ‘Croatia’, ‘Czech Republic’, ‘France’, ‘Georgia’, ‘Germany’, ‘Hamburg/Germany’, ‘Israel’, ‘Italy’, ‘Korea’, ‘Korea South’, ‘Moldova’, ‘Netherlands’, ‘Nigeria’, ‘Ontario Canada’, ‘Ontario/Canada’, ‘Pakistan’, ‘Poland’, ‘Puerto Rico’, ‘Republic of Moldova’, ‘Romania’, ‘Russia’, ‘Sao Paulo’, ‘Singapore’, ‘Spain’, ‘Switzerland’, ‘Ukraine’, ‘United Kingdom’, ‘United States’, ‘Vietnam’, ‘Yemen’.

	days_to_birth[]

	list

	Optional.

	days_to_birth_gte

	integer

	Optional.

	days_to_birth_lte

	integer

	Optional.

	days_to_collection[]

	list

	Optional.

	days_to_collection_gte

	integer

	Optional.

	days_to_collection_lte

	integer

	Optional.

	days_to_death[]

	list

	Optional.

	days_to_death_gte

	integer

	Optional.

	days_to_death_lte

	integer

	Optional.

	days_to_initial_pathologic_diagnosis[]

	list

	Optional.

	days_to_initial_pathologic_diagnosis_gte

	integer

	Optional.

	days_to_initial_pathologic_diagnosis_lte

	integer

	Optional.

	days_to_last_followup[]

	list

	Optional.

	days_to_last_followup_gte

	integer

	Optional.

	days_to_last_followup_lte

	integer

	Optional.

	days_to_last_known_alive[]

	list

	Optional.

	days_to_last_known_alive_gte

	integer

	Optional.

	days_to_last_known_alive_lte

	integer

	Optional.

	days_to_sample_procurement[]

	list

	Optional.

	days_to_sample_procurement_gte

	integer

	Optional.

	days_to_sample_procurement_lte

	integer

	Optional.

	days_to_submitted_specimen_dx[]

	list

	Optional.

	days_to_submitted_specimen_dx_gte

	integer

	Optional.

	days_to_submitted_specimen_dx_lte

	integer

	Optional.

	disease_code[]

	list

	Optional. Possible values include: ‘ACC’, ‘BLCA’, ‘BRCA’, ‘CESC’, ‘CHOL’, ‘COAD’, ‘DLBC’, ‘ESCA’, ‘GBM’, ‘HNSC’, ‘KICH’, ‘KIRC’, ‘KIRP’, ‘LAML’, ‘LGG’, ‘LIHC’, ‘LUAD’, ‘LUSC’, ‘MESO’, ‘OV’, ‘PAAD’, ‘PCPG’, ‘PRAD’, ‘READ’, ‘SARC’, ‘SKCM’, ‘STAD’, ‘TGCT’, ‘THCA’, ‘THYM’, ‘UCEC’, ‘UCS’, ‘UVM’.

	endpoint_type[]

	list

	Optional. Possible values include: ‘current’, ‘legacy’.

	ethnicity[]

	list

	Optional. Possible values include: ‘HISPANIC OR LATINO’, ‘NOT HISPANIC OR LATINO’.

	gender[]

	list

	Optional. Possible values include: ‘FEMALE’, ‘MALE’.

	gleason_score_combined[]

	list

	Optional.

	gleason_score_combined_gte

	integer

	Optional.

	gleason_score_combined_lte

	integer

	Optional.

	h_pylori_infection[]

	list

	Optional. Possible values include: ‘Current’, ‘Never’, ‘No’, ‘Yes’.

	height[]

	list

	Optional.

	height_gte

	integer

	Optional.

	height_lte

	integer

	Optional.

	histological_type[]

	list

	Optional.

	history_of_colon_polyps[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	history_of_neoadjuvant_treatment[]

	list

	Optional. Possible values include: ‘No’, ‘Yes’, ‘Yes, Pharmaceutical Treatment Prior to Resection’, ‘Yes, Radiation Prior to Resection’.

	hpv_calls[]

	list

	Optional. Possible values include: ‘HPV16’, ‘HPV16;HPV18’, ‘HPV16;HPV18;HPV58’, ‘HPV16;HPV31’, ‘HPV16;HPV33’, ‘HPV16;HPV35’, ‘HPV16;HPV39’, ‘HPV16;HPV52’, ‘HPV16;HPV66’, ‘HPV18’, ‘HPV18;HPV31’, ‘HPV31’, ‘HPV33’, ‘HPV35’, ‘HPV39’, ‘HPV45’, ‘HPV51’, ‘HPV52’, ‘HPV56’, ‘HPV58’, ‘HPV59’, ‘HPV68’, ‘HPV73’.

	hpv_status[]

	list

	Optional. Possible values include: ‘Indeterminate’, ‘Negative’, ‘Positive’.

	icd_10[]

	list

	Optional.

	icd_o_3_histology[]

	list

	Optional.

	icd_o_3_site[]

	list

	Optional.

	lymphatic_invasion[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	lymphnodes_examined[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	lymphovascular_invasion_present[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	max_percent_lymphocyte_infiltration[]

	list

	Optional.

	max_percent_lymphocyte_infiltration_gte

	number

	Optional.

	max_percent_lymphocyte_infiltration_lte

	number

	Optional.

	max_percent_monocyte_infiltration[]

	list

	Optional.

	max_percent_monocyte_infiltration_gte

	number

	Optional.

	max_percent_monocyte_infiltration_lte

	number

	Optional.

	max_percent_necrosis[]

	list

	Optional.

	max_percent_necrosis_gte

	number

	Optional.

	max_percent_necrosis_lte

	number

	Optional.

	max_percent_neutrophil_infiltration[]

	list

	Optional.

	max_percent_neutrophil_infiltration_gte

	number

	Optional.

	max_percent_neutrophil_infiltration_lte

	number

	Optional.

	max_percent_normal_cells[]

	list

	Optional.

	max_percent_normal_cells_gte

	number

	Optional.

	max_percent_normal_cells_lte

	number

	Optional.

	max_percent_stromal_cells[]

	list

	Optional.

	max_percent_stromal_cells_gte

	number

	Optional.

	max_percent_stromal_cells_lte

	number

	Optional.

	max_percent_tumor_cells[]

	list

	Optional.

	max_percent_tumor_cells_gte

	number

	Optional.

	max_percent_tumor_cells_lte

	number

	Optional.

	max_percent_tumor_nuclei[]

	list

	Optional.

	max_percent_tumor_nuclei_gte

	number

	Optional.

	max_percent_tumor_nuclei_lte

	number

	Optional.

	menopause_status[]

	list

	Optional. Possible values include: ‘Indeterminate (neither Pre or Postmenopausal)’, ‘Peri (6-12 months since last menstrual period)’, ‘Post (prior bilateral ovariectomy OR >12 mo since LMP with no prior hysterectomy)’, ‘Pre (<6 months since LMP AND no prior bilateral ovariectomy AND not on estrogen replacement)’.

	min_percent_lymphocyte_infiltration[]

	list

	Optional.

	min_percent_lymphocyte_infiltration_gte

	number

	Optional.

	min_percent_lymphocyte_infiltration_lte

	number

	Optional.

	min_percent_monocyte_infiltration[]

	list

	Optional.

	min_percent_monocyte_infiltration_gte

	number

	Optional.

	min_percent_monocyte_infiltration_lte

	number

	Optional.

	min_percent_necrosis[]

	list

	Optional.

	min_percent_necrosis_gte

	number

	Optional.

	min_percent_necrosis_lte

	number

	Optional.

	min_percent_neutrophil_infiltration[]

	list

	Optional.

	min_percent_neutrophil_infiltration_gte

	number

	Optional.

	min_percent_neutrophil_infiltration_lte

	number

	Optional.

	min_percent_normal_cells[]

	list

	Optional.

	min_percent_normal_cells_gte

	number

	Optional.

	min_percent_normal_cells_lte

	number

	Optional.

	min_percent_stromal_cells[]

	list

	Optional.

	min_percent_stromal_cells_gte

	number

	Optional.

	min_percent_stromal_cells_lte

	number

	Optional.

	min_percent_tumor_cells[]

	list

	Optional.

	min_percent_tumor_cells_gte

	number

	Optional.

	min_percent_tumor_cells_lte

	number

	Optional.

	min_percent_tumor_nuclei[]

	list

	Optional.

	min_percent_tumor_nuclei_gte

	number

	Optional.

	min_percent_tumor_nuclei_lte

	number

	Optional.

	mononucleotide_and_dinucleotide_marker_panel_analysis_status[]

	list

	Optional. Possible values include: ‘Indeterminate’, ‘MSI-H’, ‘MSI-L’, ‘MSS’, ‘Not Tested’.

	neoplasm_histologic_grade[]

	list

	Optional. Possible values include: ‘G1’, ‘G2’, ‘G3’, ‘G4’, ‘GB’, ‘GX’, ‘High Grade’, ‘Low Grade’.

	new_tumor_event_after_initial_treatment[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	num_portions[]

	list

	Optional.

	num_portions_gte

	integer

	Optional.

	num_portions_lte

	integer

	Optional.

	num_slides[]

	list

	Optional.

	num_slides_gte

	integer

	Optional.

	num_slides_lte

	integer

	Optional.

	number_of_lymphnodes_examined[]

	list

	Optional.

	number_of_lymphnodes_examined_gte

	integer

	Optional.

	number_of_lymphnodes_examined_lte

	integer

	Optional.

	number_of_lymphnodes_positive_by_he[]

	list

	Optional.

	number_of_lymphnodes_positive_by_he_gte

	integer

	Optional.

	number_of_lymphnodes_positive_by_he_lte

	integer

	Optional.

	number_pack_years_smoked[]

	list

	Optional.

	number_pack_years_smoked_gte

	integer

	Optional.

	number_pack_years_smoked_lte

	integer

	Optional.

	other_dx[]

	list

	Optional. Possible values include: ‘Both History of Synchronous/ Bilateral and Prior Malignancy’, ‘No’, ‘Yes, History of Prior Malignancy’, ‘Yes, History of Synchronous/Bilateral Malignancy’.

	other_malignancy_anatomic_site[]

	list

	Optional.

	other_malignancy_histological_type[]

	list

	Optional. Possible values include: ‘Adenocarcinoma, Not Otherwise Specified’, ‘Adenocarcinoma, Not Otherwise Specified, Adenocarcinoma, Not Otherwise Specified’, ‘Adenocarcinoma, Not Otherwise Specified, Colon Adenocarcinoma’, ‘Adenocarcinoma, Not Otherwise Specified, Kidney Clear Cell Renal Carcinoma’, ‘Adenocarcinoma, Not Otherwise Specified, Lung Acinar Adenocarcinoma’, ‘Adenocarcinoma, Not Otherwise Specified, Other, specify’, ‘Adenocarcinoma, Not Otherwise Specified, Other, specify, Other, specify’, ‘Adenocarcinoma, Not Otherwise Specified, Squamous Cell Carcinoma, Not Otherwise Specified’, ‘Adenosquamous’, ‘Astrocytoma’, ‘Basaloid Squamous Cell’, ‘Basaloid Squamous Cell, Adenocarcinoma, Not Otherwise Specified’, ‘Clear Cell Adenocarcinoma’, ‘Clear Cell Squamous Cell’, ‘Colon Adenocarcinoma’, ‘Colon Adenocarcinoma, Colon Adenocarcinoma’, ‘Colon Mucinous Adenocarcinoma’, ‘Endometrioid endometrial adenocarcinoma (Grade 1 or 2)’, ‘Endometrioid endometrial adenocarcinoma (Grade 3)’, ‘Head & Neck Squamous Cell Carcinoma’, ‘Hepatocellular Carcinoma’, ‘Kidney Clear Cell Renal Carcinoma’, ‘Kidney Clear Cell Renal Carcinoma, Kidney Clear Cell Renal Carcinoma’, ‘Kidney Clear Cell Renal Carcinoma, Kidney Clear Cell Renal Carcinoma, Other, specify’, ‘Kidney Clear Cell Renal Carcinoma, Kidney Papillary Renal Cell Carcinoma’, ‘Kidney Clear Cell Renal Carcinoma, Other, specify’, ‘Kidney Papillary Renal Cell Carcinoma’, ‘Kidney Papillary Renal Cell Carcinoma, Kidney Papillary Renal Cell Carcinoma’, ‘Kidney Papillary Renal Cell Carcinoma, Kidney Papillary Renal Cell Carcinoma, Adenocarcinoma, Not Otherwise Specified’, ‘Lung Adenocarcinoma Mixed Subtype’, ‘Lung Adenocarcinoma- Not Otherwise Specified (NOS)’, ‘Lung Adenocarcinoma- Not Otherwise Specified (NOS), Adenocarcinoma, Not Otherwise Specified’, ‘Lung Bronchioloalveolar Carcinoma Nonmucinous’, ‘Lung Clear Cell Squamous Cell Carcinoma’, ‘Lung Clear Cell Squamous Cell Carcinoma, Other, specify’, ‘Lung Papillary Adenocarcinoma’, ‘Lung Small Cell Squamous Cell Carcinoma’, ‘Other, specify’, ‘Other, specify, Adenocarcinoma, Not Otherwise Specified’, ‘Other, specify, Adenocarcinoma, Not Otherwise Specified, Other, specify’, ‘Other, specify, Basaloid Squamous Cell’, ‘Other, specify, Clear Cell Adenocarcinoma’, ‘Other, specify, Kidney Papillary Renal Cell Carcinoma’, ‘Other, specify, Kidney Papillary Renal Cell Carcinoma, Kidney Papillary Renal Cell Carcinoma’, ‘Other, specify, Lung Mucinous Adenocarcinoma’, ‘Other, specify, Other, specify’, ‘Other, specify, Other, specify, Kidney Papillary Renal Cell Carcinoma’, ‘Other, specify, Other, specify, Other, specify’, ‘Other, specify, Other, specify, Other, specify, Other, specify’, ‘Other, specify, Other, specify, Squamous Cell Carcinoma, Not Otherwise Specified’, ‘Other, specify, Squamous Cell Carcinoma, Not Otherwise Specified’, ‘Papillary Squamous Cell’, ‘Rectal Adenocarcinoma’, ‘Small Cell Squamous Cell’, ‘Squamous Cell Carcinoma, Not Otherwise Specified’, ‘Squamous Cell Carcinoma, Not Otherwise Specified, Basaloid Squamous Cell’, ‘Squamous Cell Carcinoma, Not Otherwise Specified, Kidney Papillary Renal Cell Carcinoma’, ‘Squamous Cell Carcinoma, Not Otherwise Specified, Lung Adenocarcinoma Mixed Subtype’, ‘Squamous Cell Carcinoma, Not Otherwise Specified, Other, specify’, ‘Squamous Cell Carcinoma, Not Otherwise Specified, Other, specify, Other, specify’, ‘Squamous Cell Carcinoma, Not Otherwise Specified, Squamous Cell Carcinoma, Not Otherwise Specified’, ‘Squamous Cell Carcinoma, Not Otherwise Specified, Squamous Cell Carcinoma, Not Otherwise Specified, Basaloid Squamous Cell’, ‘Thyroid Papillary Carcinoma - Classical/usual’, ‘Thyroid Papillary Carcinoma - Classical/usual, Adenocarcinoma, Not Otherwise Specified’, ‘Thyroid Papillary Carcinoma - Follicular (>= 99% follicular patterned)’, ‘Thyroid Papillary Carcinoma - Other, specify’, ‘Thyroid Papillary Carcinoma - Other, specify, Thyroid Papillary Carcinoma - Other, specify, Other, specify’, ‘Uterine serous endometrial adenocarcinoma’.

	other_malignancy_type[]

	list

	Optional. Possible values include: ‘Prior Malignancy’, ‘Prior Malignancy, Prior Malignancy’, ‘Prior Malignancy, Prior Malignancy, Prior Malignancy’, ‘Prior Malignancy, Prior Malignancy, Prior Malignancy, Synchronous Malignancy’, ‘Prior Malignancy, Prior Malignancy, Synchronous Malignancy’, ‘Prior Malignancy, Synchronous Malignancy’, ‘Prior Malignancy, Synchronous Malignancy, Prior Malignancy’, ‘Synchronous Malignancy’, ‘Synchronous Malignancy, Prior Malignancy’, ‘Synchronous Malignancy, Prior Malignancy, Prior Malignancy, Prior Malignancy’, ‘Synchronous Malignancy, Prior Malignancy, Synchronous Malignancy’, ‘Synchronous Malignancy, Synchronous Malignancy’, ‘Synchronous Malignancy, Synchronous Malignancy, Prior Malignancy’.

	pathologic_M[]

	list

	Optional. Possible values include: ‘cM0 (i+)’, ‘M0’, ‘M1’, ‘M1a’, ‘M1b’, ‘M1c’, ‘MX’.

	pathologic_N[]

	list

	Optional. Possible values include: ‘N0’, ‘N0 (i+)’, ‘N0 (i-)’, ‘N0 (mol+)’, ‘N1’, ‘N1a’, ‘N1b’, ‘N1c’, ‘N1mi’, ‘N2’, ‘N2a’, ‘N2b’, ‘N2c’, ‘N3’, ‘N3a’, ‘N3b’, ‘N3c’, ‘NX’.

	pathologic_stage[]

	list

	Optional. Possible values include: ‘I/II NOS’, ‘IS’, ‘Stage 0’, ‘Stage I’, ‘Stage IA’, ‘Stage IB’, ‘Stage II’, ‘Stage IIA’, ‘Stage IIB’, ‘Stage IIC’, ‘Stage III’, ‘Stage IIIA’, ‘Stage IIIB’, ‘Stage IIIC’, ‘Stage IV’, ‘Stage IVA’, ‘Stage IVB’, ‘Stage IVC’, ‘Stage X’.

	pathologic_T[]

	list

	Optional. Possible values include: ‘T0’, ‘T1’, ‘T1a’, ‘T1a1’, ‘T1b’, ‘T1b1’, ‘T1b2’, ‘T1c’, ‘T2’, ‘T2a’, ‘T2a1’, ‘T2a2’, ‘T2b’, ‘T2c’, ‘T3’, ‘T3a’, ‘T3b’, ‘T3c’, ‘T4’, ‘T4a’, ‘T4b’, ‘T4c’, ‘T4d’, ‘T4e’, ‘Tis’, ‘TX’.

	pathology_report_uuid[]

	list

	Optional.

	person_neoplasm_cancer_status[]

	list

	Optional. Possible values include: ‘TUMOR FREE’, ‘WITH TUMOR’.

	pregnancies[]

	list

	Optional. Possible values include: ‘0’, ‘1’, ‘2’, ‘3’, ‘4+’.

	preservation_method[]

	list

	Optional. Possible values include: ‘FFPE’, ‘frozen’.

	primary_neoplasm_melanoma_dx[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	primary_therapy_outcome_success[]

	list

	Optional. Possible values include: ‘Complete Remission/Response’, ‘No Measureable Tumor or Tumor Markers’, ‘Normalization of Tumor Markers, but Residual Tumor Mass’, ‘Partial Remission/Response’, ‘Persistent Disease’, ‘Progressive Disease’, ‘Stable Disease’.

	program_name[]

	list

	Optional. Possible values include: ‘TCGA’.

	project_short_name[]

	list

	Optional. Possible values include: ‘TCGA-ACC’, ‘TCGA-BLCA’, ‘TCGA-BRCA’, ‘TCGA-CESC’, ‘TCGA-CHOL’, ‘TCGA-COAD’, ‘TCGA-DLBC’, ‘TCGA-ESCA’, ‘TCGA-GBM’, ‘TCGA-HNSC’, ‘TCGA-KICH’, ‘TCGA-KIRC’, ‘TCGA-KIRP’, ‘TCGA-LAML’, ‘TCGA-LGG’, ‘TCGA-LIHC’, ‘TCGA-LUAD’, ‘TCGA-LUSC’, ‘TCGA-MESO’, ‘TCGA-OV’, ‘TCGA-PAAD’, ‘TCGA-PCPG’, ‘TCGA-PRAD’, ‘TCGA-READ’, ‘TCGA-SARC’, ‘TCGA-SKCM’, ‘TCGA-STAD’, ‘TCGA-TGCT’, ‘TCGA-THCA’, ‘TCGA-THYM’, ‘TCGA-UCEC’, ‘TCGA-UCS’, ‘TCGA-UVM’.

	psa_value[]

	list

	Optional.

	psa_value_gte

	number

	Optional.

	psa_value_lte

	number

	Optional.

	race[]

	list

	Optional. Possible values include: ‘AMERICAN INDIAN OR ALASKA NATIVE’, ‘ASIAN’, ‘BLACK OR AFRICAN AMERICAN’, ‘NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER’, ‘WHITE’.

	residual_tumor[]

	list

	Optional. Possible values include: ‘R0’, ‘R1’, ‘R2’, ‘RX’.

	sample_barcode[]

	list

	Optional.

	sample_gdc_id[]

	list

	Optional.

	sample_type[]

	list

	Optional. Possible values include: ‘01’, ‘02’, ‘03’, ‘05’, ‘06’, ‘07’, ‘10’, ‘11’, ‘12’, ‘14’.

	stopped_smoking_year[]

	list

	Optional.

	stopped_smoking_year_gte

	integer

	Optional.

	stopped_smoking_year_lte

	integer

	Optional.

	summary_file_count[]

	list

	Optional.

	summary_file_count_gte

	integer

	Optional.

	summary_file_count_lte

	integer

	Optional.

	tobacco_smoking_history[]

	list

	Optional. Possible values include: ‘1’, ‘2’, ‘3’, ‘4’, ‘5’.

	tss_code[]

	list

	Optional.

	tumor_tissue_site[]

	list

	Optional.

	tumor_type[]

	list

	Optional. Possible values include: ‘Primary’, ‘Type 1’, ‘Type 2’.

	venous_invasion[]

	list

	Optional. Possible values include: ‘NO’, ‘YES’.

	vital_status[]

	list

	Optional. Possible values include: ‘Alive’, ‘Dead’.

	weight[]

	list

	Optional.

	weight_gte

	integer

	Optional.

	weight_lte

	integer

	Optional.

	year_of_diagnosis[]

	list

	Optional.

	year_of_diagnosis_gte

	integer

	Optional.

	year_of_diagnosis_lte

	integer

	Optional.

	year_of_tobacco_smoking_onset[]

	list

	Optional.

	year_of_tobacco_smoking_onset_gte

	integer

	Optional.

	year_of_tobacco_smoking_onset_lte

	integer

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "case_count": integer,
 "filters": [
 {
 "name": string,
 "value": string
 }
],
 "id": string,
 "last_date_saved": string,
 "name": string,
 "sample_count": integer
}

	Parameter name

	Value

	Description

	case_count

	integer

	Number of unique case barcodes in the cohort.

	filters[]

	list

	List of filters applied to create cohort, if any.

	filters[].name

	string

	Names of filtering parameters used to create the cohort.

	filters[].value

	string

	Values of filtering parameters used to create the cohort.

	id

	string

	Cohort id.

	last_date_saved

	string

	Last date the cohort was saved.

	name

	string

	Name of cohort.

	sample_count

	integer

	Number of unique sample barcodes in the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cases().get()

Returns information about a specific case, including a list of samples and aliquots derived from this case. Takes a case barcode (of length 12, eg TCGA-B9-7268) as a required parameter. User does not need to be authenticated.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cases/TCGA-ZH-A8Y6

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.cases.get?case_barcode=TCGA-ZH-A8Y6&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.cases().get(case_barcode='TCGA-W5-AA2R').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cases/{case_barcode}

Parameters

	Parameter name

	Value

	Description

	case_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "clinical_data": {
 "age_at_diagnosis": integer,
 "age_began_smoking_in_years": integer,
 "anatomic_neoplasm_subdivision": string,
 "avg_percent_lymphocyte_infiltration": number,
 "avg_percent_monocyte_infiltration": number,
 "avg_percent_necrosis": number,
 "avg_percent_neutrophil_infiltration": number,
 "avg_percent_normal_cells": number,
 "avg_percent_stromal_cells": number,
 "avg_percent_tumor_cells": number,
 "avg_percent_tumor_nuclei": number,
 "batch_number": integer,
 "bcr": string,
 "bmi": number,
 "case_barcode": string,
 "case_gdc_id": string,
 "clinical_M": string,
 "clinical_N": string,
 "clinical_stage": string,
 "clinical_T": string,
 "colorectal_cancer": string,
 "country": string,
 "days_to_birth": integer,
 "days_to_collection": integer,
 "days_to_death": integer,
 "days_to_initial_pathologic_diagnosis": integer,
 "days_to_last_followup": integer,
 "days_to_last_known_alive": integer,
 "days_to_sample_procurement": integer,
 "days_to_submitted_specimen_dx": integer,
 "disease_code": string,
 "endpoint_type": string,
 "ethnicity": string,
 "gender": string,
 "gleason_score_combined": integer,
 "h_pylori_infection": string,
 "height": integer,
 "histological_type": string,
 "history_of_colon_polyps": string,
 "history_of_neoadjuvant_treatment": string,
 "hpv_calls": string,
 "hpv_status": string,
 "icd_10": string,
 "icd_o_3_histology": string,
 "icd_o_3_site": string,
 "lymphatic_invasion": string,
 "lymphnodes_examined": string,
 "lymphovascular_invasion_present": string,
 "max_percent_lymphocyte_infiltration": number,
 "max_percent_monocyte_infiltration": number,
 "max_percent_necrosis": number,
 "max_percent_neutrophil_infiltration": number,
 "max_percent_normal_cells": number,
 "max_percent_stromal_cells": number,
 "max_percent_tumor_cells": number,
 "max_percent_tumor_nuclei": number,
 "menopause_status": string,
 "min_percent_lymphocyte_infiltration": number,
 "min_percent_monocyte_infiltration": number,
 "min_percent_necrosis": number,
 "min_percent_neutrophil_infiltration": number,
 "min_percent_normal_cells": number,
 "min_percent_stromal_cells": number,
 "min_percent_tumor_cells": number,
 "min_percent_tumor_nuclei": number,
 "mononucleotide_and_dinucleotide_marker_panel_analysis_status": string,
 "neoplasm_histologic_grade": string,
 "new_tumor_event_after_initial_treatment": string,
 "num_portions": integer,
 "num_slides": integer,
 "number_of_lymphnodes_examined": integer,
 "number_of_lymphnodes_positive_by_he": integer,
 "number_pack_years_smoked": integer,
 "other_dx": string,
 "other_malignancy_anatomic_site": string,
 "other_malignancy_histological_type": string,
 "other_malignancy_type": string,
 "pathologic_M": string,
 "pathologic_N": string,
 "pathologic_stage": string,
 "pathologic_T": string,
 "pathology_report_uuid": string,
 "person_neoplasm_cancer_status": string,
 "pregnancies": string,
 "preservation_method": string,
 "primary_neoplasm_melanoma_dx": string,
 "primary_therapy_outcome_success": string,
 "program_name": string,
 "project_short_name": string,
 "psa_value": number,
 "race": string,
 "residual_tumor": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string,
 "stopped_smoking_year": integer,
 "summary_file_count": integer,
 "tobacco_smoking_history": string,
 "tss_code": string,
 "tumor_tissue_site": string,
 "tumor_type": string,
 "venous_invasion": string,
 "vital_status": string,
 "weight": integer,
 "year_of_diagnosis": integer,
 "year_of_tobacco_smoking_onset": integer
 },
 "samples": [string]
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this patient.

	clinical_data

	nested object

	The clinical data about the patient.

	clinical_data.age_at_diagnosis

	integer

	Age at which a condition or disease was first diagnosed in years.

	clinical_data.age_began_smoking_in_years

	integer

	Age began smoking cigarettes expressed in number of years since birth.

	clinical_data.anatomic_neoplasm_subdivision

	string

	Text term to describe the spatial location, subdivisions and/or anatomic site name of a tumor.

	clinical_data.avg_percent_lymphocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	clinical_data.avg_percent_monocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	clinical_data.avg_percent_necrosis

	number

	Average in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	clinical_data.avg_percent_neutrophil_infiltration

	number

	Average in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	clinical_data.avg_percent_normal_cells

	number

	Average in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	clinical_data.avg_percent_stromal_cells

	number

	Average in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	clinical_data.avg_percent_tumor_cells

	number

	Average in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	clinical_data.avg_percent_tumor_nuclei

	number

	Average in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	clinical_data.batch_number

	integer

	Groups samples by the batch they were processed in.

	clinical_data.bcr

	string

	A TCGA center where samples are carefully catalogued, processed, quality-checked and stored along with participant clinical information.

	clinical_data.bmi

	number

	Body Mass Index

	clinical_data.case_barcode

	string

	Case barcode.

	clinical_data.case_gdc_id

	string

	The GDC assigned id for the case

	clinical_data.clinical_M

	string

	Extent of the distant metastasis for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	clinical_data.clinical_N

	string

	Extent of the regional lymph node involvement for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	clinical_data.clinical_stage

	string

	Stage group determined from clinical information on the tumor (T), regional node (N) and metastases (M) and by grouping cases with similar prognosis.

	clinical_data.clinical_T

	string

	Extent of the primary cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	clinical_data.colorectal_cancer

	string

	Text term to signify whether a patient has been diagnosed with colorectal cancer.

	clinical_data.country

	string

	Text to identify the name of the state, province, or country in which the sample was procured.

	clinical_data.days_to_birth

	integer

	Time interval from a person’s date of birth to the date of initial pathologic diagnosis, represented as a calculated number of days.

	clinical_data.days_to_collection

	integer

	The number of days between diagnosis and tissue collection.

	clinical_data.days_to_death

	integer

	Time interval from a person’s date of death to the date of initial pathologic diagnosis, represented as a calculated number of days.

	clinical_data.days_to_initial_pathologic_diagnosis

	integer

	Numeric value to represent the day of an individual’s initial pathologic diagnosis of cancer.

	clinical_data.days_to_last_followup

	integer

	Time interval from the date of last followup to the date of initial pathologic diagnosis, represented as a calculated number of days.

	clinical_data.days_to_last_known_alive

	integer

	The number of days between diagnosis and when the individual was last known to be alive.

	clinical_data.days_to_sample_procurement

	integer

	Indicates the days to sample procurement for the submitted sample in relation to the date of initial diagnosis

	clinical_data.days_to_submitted_specimen_dx

	integer

	Time interval from the date of diagnosis of the submitted sample to the date of initial pathologic diagnosis, represented as a calculated number of days.

	clinical_data.disease_code

	string

	Text term referring to the cancer type

	clinical_data.endpoint_type

	string

	Which type of GDC Case API was used, either legacy or current

	clinical_data.ethnicity

	string

	The text for reporting information about ethnicity based on the Office of Management and Budget (OMB) categories.

	clinical_data.gender

	string

	Text designations that identify gender.

	clinical_data.gleason_score_combined

	integer

	A numeric value obtained by adding the primary and secondary patterns (grades).

	clinical_data.h_pylori_infection

	string

	Text term to indicate the state of the diagnosis of an individual with Helicobacter pylori infection.

	clinical_data.height

	integer

	The height of the patient in centimeters.

	clinical_data.histological_type

	string

	Text term for the structural pattern of cancer cells used to define a microscopic diagnosis.

	clinical_data.history_of_colon_polyps

	string

	Yes/No indicator to describe if the subject had a previous history of colon polyps as noted in the history/physical or previous endoscopic report(s).

	clinical_data.history_of_neoadjuvant_treatment

	string

	Text term to describe the patient’s history of neoadjuvant treatment and the kind of treatment given prior to resection of the tumor.

	clinical_data.hpv_calls

	string

	Results of HPV tests.

	clinical_data.hpv_status

	string

	Current HPV status.

	clinical_data.icd_10

	string

	The tenth version of the International Classification of Disease (ICD).

	clinical_data.icd_o_3_histology

	string

	The third edition of the International Classification of Diseases for Oncology.

	clinical_data.icd_o_3_site

	string

	The third edition of the International Classification of Diseases for Oncology.

	clinical_data.lymphatic_invasion

	string

	A yes/no indicator to ask if malignant cells are present in small or thin-walled vessels suggesting lymphatic involvement.

	clinical_data.lymphnodes_examined

	string

	A yes/no/unknown indicator whether a lymph node assessment was performed at the primary presentation of disease.

	clinical_data.lymphovascular_invasion_present

	string

	A yes/no indicator to ask if large vessel (vascular) invasion or small, thin-walled (lymphatic) invasion was detected in a tumor specimen.

	clinical_data.max_percent_lymphocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	clinical_data.max_percent_monocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	clinical_data.max_percent_necrosis

	number

	Maximum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	clinical_data.max_percent_neutrophil_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	clinical_data.max_percent_normal_cells

	number

	Maximum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	clinical_data.max_percent_stromal_cells

	number

	Maximum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	clinical_data.max_percent_tumor_cells

	number

	Maximum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	clinical_data.max_percent_tumor_nuclei

	number

	Maximum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	clinical_data.menopause_status

	string

	Text term to signify the status of a woman’s menopause, the permanent cessation of menses, usually defined by 6 to 12 months of amenorrhea.

	clinical_data.min_percent_lymphocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of lymphcyte infiltration in a malignant tumor sample or specimen.

	clinical_data.min_percent_monocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	clinical_data.min_percent_necrosis

	number

	Minimum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	clinical_data.min_percent_neutrophil_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	clinical_data.min_percent_normal_cells

	number

	Minimum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	clinical_data.min_percent_stromal_cells

	number

	Minimum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	clinical_data.min_percent_tumor_cells

	number

	Minimum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	clinical_data.min_percent_tumor_nuclei

	number

	Minimum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	clinical_data.mononucleotide_and_dinucleotide_marker_panel_analysis_status

	string

	Text result of microsatellite instability (MSI) testing at using a mononucleotide and dinucleotide microsatellite panel.

	clinical_data.neoplasm_histologic_grade

	string

	Numeric value to express the degree of abnormality of cancer cells, a measure of differentiation and aggressiveness.

	clinical_data.new_tumor_event_after_initial_treatment

	string

	Yes/No/Unknown indicator to identify whether a patient has had a new tumor event after initial treatment.

	clinical_data.num_portions

	integer

	The number of portions obtained from the sample

	clinical_data.num_slides

	integer

	The number of slides derived from the sample

	clinical_data.number_of_lymphnodes_examined

	integer

	The total number of lymph nodes removed and pathologically assessed for disease.

	clinical_data.number_of_lymphnodes_positive_by_he

	integer

	Numeric value to signify the count of positive lymph nodes identified through hematoxylin and eosin (H&E) staining light microscopy.

	clinical_data.number_pack_years_smoked

	integer

	Numeric computed value to represent lifetime tobacco exposure defined as number of cigarettes smoked per day x number of years smoked divided by 20.

	clinical_data.other_dx

	string

	Text term to describe the patient’s history of cancer diagnosis and the spatial location of any previous cancer occurrence.

	clinical_data.other_malignancy_anatomic_site

	string

	Text term describe the anatomic site of the prior or synchronous malignancy.

	clinical_data.other_malignancy_histological_type

	string

	Text term describe the histology and/or subtype of the prior or synchronous malignancy.

	clinical_data.other_malignancy_type

	string

	The type, relative occurance to the current malignancy

	clinical_data.pathologic_M

	string

	Code to represent the defined absence or presence of distant spread or metastases (M) to locations via vascular channels or lymphatics beyond the regional lymph nodes, using criteria established by the American Joint Committee on Cancer (AJCC).

	clinical_data.pathologic_N

	string

	The codes that represent the stage of cancer based on the nodes present (N stage) according to criteria based on multiple editions of the AJCC’s Cancer Staging Manual.

	clinical_data.pathologic_stage

	string

	The extent of a cancer, especially whether the disease has spread from the original site to other parts of the body based on AJCC staging criteria.

	clinical_data.pathologic_T

	string

	Code of pathological T (primary tumor) to define the size or contiguous extension of the primary tumor (T), using staging criteria from the American Joint Committee on Cancer (AJCC).

	clinical_data.pathology_report_uuid

	string

	The UUID of th epathology report

	clinical_data.person_neoplasm_cancer_status

	string

	The state or condition of an individual’s neoplasm at a particular point in time.

	clinical_data.pregnancies

	string

	Value to describe the number of full-term pregnancies that a woman has experienced.

	clinical_data.preservation_method

	string

	The method used to preserve the sample after it has been removed from a participant.

	clinical_data.primary_neoplasm_melanoma_dx

	string

	Text indicator to signify whether a person had a primary diagnosis of melanoma.

	clinical_data.primary_therapy_outcome_success

	string

	Measure of success.

	clinical_data.program_name

	string

	Project name, e.g. ‘TCGA’.

	clinical_data.project_short_name

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	clinical_data.psa_value

	number

	The lab value that represents the results of the most recent (post-operative) prostatic-specific antigen (PSA) in the blood.

	clinical_data.race

	string

	The text for reporting information about race based on the Office of Management and Budget (OMB) categories.

	clinical_data.residual_tumor

	string

	Text terms to describe the status of a tissue margin following surgical resection.

	clinical_data.sample_barcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	clinical_data.sample_gdc_id

	string

	The GDC assigned id for the sample

	clinical_data.sample_type

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	clinical_data.stopped_smoking_year

	integer

	The year in which the participant quit smoking.

	clinical_data.summary_file_count

	integer

	The count of files associated with the sample

	clinical_data.tobacco_smoking_history

	string

	Category describing current smoking status and smoking history as self-reported by a patient.

	clinical_data.tss_code

	string

	A TSS ID is an alphanumeric code that uniquely identifies a TSS and its associated study

	clinical_data.tumor_tissue_site

	string

	Text term that describes the anatomic site of the tumor or disease.

	clinical_data.tumor_type

	string

	Text term to identify the morphologic subtype of papillary renal cell carcinoma.

	clinical_data.venous_invasion

	string

	The result of an assessment using the Weiss histopathologic criteria.

	clinical_data.vital_status

	string

	The survival state of the person registered on the protocol.

	clinical_data.weight

	integer

	The weight of the patient measured in kilograms.

	clinical_data.year_of_diagnosis

	integer

	Numeric value to represent the year of an individual’s initial pathologic diagnosis of cancer.

	clinical_data.year_of_tobacco_smoking_onset

	integer

	The year in which the participant began smoking.

	samples[]

	list

	List of barcodes of samples taken from this patient.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

samples().cloud_storage_file_paths()

Takes a sample barcode as a required parameter and returns cloud storage paths to files associated with that sample.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/TCGA-W5-AA2O-10A/cloud_storage_file_paths

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.samples.cloud_storage_file_paths?sample_barcode=TCGA-ZH-A8Y6-01A&platform=Genome_Wide_SNP_6&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().cloud_storage_file_paths(sample_barcode='TCGA-W5-AA2R-01A').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/{sample_barcode}/cloud_storage_file_paths

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	genomic_build

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "cloud_storage_file_paths": [string],
 "count": integer
}

	Parameter name

	Value

	Description

	cloud_storage_file_paths[]

	list

	List of Google Cloud Storage paths of files associated with the cohort.

	count

	integer

	Number of Google Cloud Storage paths returned for the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

samples().get()

Given a sample barcode (of length 16, eg TCGA-B9-7268-01A), this endpoint returns all available “biospecimen” information about this sample, the associated case barcode, a list of associated aliquots, and a list of “data_details” blocks describing each of the data files associated with this sample

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/TCGA-ZH-A8Y6-1A

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.samples.get?sample_barcode=TCGA-ZH-A8Y6-01A&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().get(sample_barcode='TCGA-W5-AA2R-01A').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/{sample_barcode}

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	endpoint_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "biospecimen_data": {
 "age_at_diagnosis": integer,
 "age_began_smoking_in_years": integer,
 "anatomic_neoplasm_subdivision": string,
 "avg_percent_lymphocyte_infiltration": number,
 "avg_percent_monocyte_infiltration": number,
 "avg_percent_necrosis": number,
 "avg_percent_neutrophil_infiltration": number,
 "avg_percent_normal_cells": number,
 "avg_percent_stromal_cells": number,
 "avg_percent_tumor_cells": number,
 "avg_percent_tumor_nuclei": number,
 "batch_number": integer,
 "bcr": string,
 "bmi": number,
 "case_barcode": string,
 "case_gdc_id": string,
 "clinical_M": string,
 "clinical_N": string,
 "clinical_stage": string,
 "clinical_T": string,
 "colorectal_cancer": string,
 "country": string,
 "days_to_birth": integer,
 "days_to_collection": integer,
 "days_to_death": integer,
 "days_to_initial_pathologic_diagnosis": integer,
 "days_to_last_followup": integer,
 "days_to_last_known_alive": integer,
 "days_to_sample_procurement": integer,
 "days_to_submitted_specimen_dx": integer,
 "disease_code": string,
 "endpoint_type": string,
 "ethnicity": string,
 "gender": string,
 "gleason_score_combined": integer,
 "h_pylori_infection": string,
 "height": integer,
 "histological_type": string,
 "history_of_colon_polyps": string,
 "history_of_neoadjuvant_treatment": string,
 "hpv_calls": string,
 "hpv_status": string,
 "icd_10": string,
 "icd_o_3_histology": string,
 "icd_o_3_site": string,
 "lymphatic_invasion": string,
 "lymphnodes_examined": string,
 "lymphovascular_invasion_present": string,
 "max_percent_lymphocyte_infiltration": number,
 "max_percent_monocyte_infiltration": number,
 "max_percent_necrosis": number,
 "max_percent_neutrophil_infiltration": number,
 "max_percent_normal_cells": number,
 "max_percent_stromal_cells": number,
 "max_percent_tumor_cells": number,
 "max_percent_tumor_nuclei": number,
 "menopause_status": string,
 "min_percent_lymphocyte_infiltration": number,
 "min_percent_monocyte_infiltration": number,
 "min_percent_necrosis": number,
 "min_percent_neutrophil_infiltration": number,
 "min_percent_normal_cells": number,
 "min_percent_stromal_cells": number,
 "min_percent_tumor_cells": number,
 "min_percent_tumor_nuclei": number,
 "mononucleotide_and_dinucleotide_marker_panel_analysis_status": string,
 "neoplasm_histologic_grade": string,
 "new_tumor_event_after_initial_treatment": string,
 "num_portions": integer,
 "num_slides": integer,
 "number_of_lymphnodes_examined": integer,
 "number_of_lymphnodes_positive_by_he": integer,
 "number_pack_years_smoked": integer,
 "other_dx": string,
 "other_malignancy_anatomic_site": string,
 "other_malignancy_histological_type": string,
 "other_malignancy_type": string,
 "pathologic_M": string,
 "pathologic_N": string,
 "pathologic_stage": string,
 "pathologic_T": string,
 "pathology_report_uuid": string,
 "person_neoplasm_cancer_status": string,
 "pregnancies": string,
 "preservation_method": string,
 "primary_neoplasm_melanoma_dx": string,
 "primary_therapy_outcome_success": string,
 "program_name": string,
 "project_short_name": string,
 "psa_value": number,
 "race": string,
 "residual_tumor": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string,
 "stopped_smoking_year": integer,
 "summary_file_count": integer,
 "tobacco_smoking_history": string,
 "tss_code": string,
 "tumor_tissue_site": string,
 "tumor_type": string,
 "venous_invasion": string,
 "vital_status": string,
 "weight": integer,
 "year_of_diagnosis": integer,
 "year_of_tobacco_smoking_onset": integer
 },
 "case": string,
 "data_details": [
 {
 "access": string,
 "analysis_workflow_type": string,
 "data_category": string,
 "data_format": string,
 "data_type": string,
 "disease_code": string,
 "endpoint_type": string,
 "experimental_strategy": string,
 "file_gdc_id": string,
 "file_name": string,
 "file_name_key": string,
 "file_size": string,
 "index_file_name": string,
 "platform": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string
 }
],
 "data_details_count": integer
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this participant.

	biospecimen_data

	nested object

	Biospecimen data about the sample.

	biospecimen_data.age_at_diagnosis

	integer

	Age at which a condition or disease was first diagnosed in years.

	biospecimen_data.age_began_smoking_in_years

	integer

	Age began smoking cigarettes expressed in number of years since birth.

	biospecimen_data.anatomic_neoplasm_subdivision

	string

	Text term to describe the spatial location, subdivisions and/or anatomic site name of a tumor.

	biospecimen_data.avg_percent_lymphocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_monocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_necrosis

	number

	Average in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_neutrophil_infiltration

	number

	Average in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_normal_cells

	number

	Average in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_stromal_cells

	number

	Average in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_tumor_cells

	number

	Average in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_tumor_nuclei

	number

	Average in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.batch_number

	integer

	Groups samples by the batch they were processed in.

	biospecimen_data.bcr

	string

	A TCGA center where samples are carefully catalogued, processed, quality-checked and stored along with participant clinical information.

	biospecimen_data.bmi

	number

	Body Mass Index

	biospecimen_data.case_barcode

	string

	Case barcode.

	biospecimen_data.case_gdc_id

	string

	The GDC assigned id for the case

	biospecimen_data.clinical_M

	string

	Extent of the distant metastasis for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.clinical_N

	string

	Extent of the regional lymph node involvement for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.clinical_stage

	string

	Stage group determined from clinical information on the tumor (T), regional node (N) and metastases (M) and by grouping cases with similar prognosis.

	biospecimen_data.clinical_T

	string

	Extent of the primary cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.colorectal_cancer

	string

	Text term to signify whether a patient has been diagnosed with colorectal cancer.

	biospecimen_data.country

	string

	Text to identify the name of the state, province, or country in which the sample was procured.

	biospecimen_data.days_to_birth

	integer

	Time interval from a person’s date of birth to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_collection

	integer

	The number of days between diagnosis and tissue collection.

	biospecimen_data.days_to_death

	integer

	Time interval from a person’s date of death to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_initial_pathologic_diagnosis

	integer

	Numeric value to represent the day of an individual’s initial pathologic diagnosis of cancer.

	biospecimen_data.days_to_last_followup

	integer

	Time interval from the date of last followup to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_last_known_alive

	integer

	The number of days between diagnosis and when the individual was last known to be alive.

	biospecimen_data.days_to_sample_procurement

	integer

	Indicates the days to sample procurement for the submitted sample in relation to the date of initial diagnosis

	biospecimen_data.days_to_submitted_specimen_dx

	integer

	Time interval from the date of diagnosis of the submitted sample to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.disease_code

	string

	Text term referring to the cancer type

	biospecimen_data.endpoint_type

	string

	Which type of GDC Case API was used, either legacy or current

	biospecimen_data.ethnicity

	string

	The text for reporting information about ethnicity based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.gender

	string

	Text designations that identify gender.

	biospecimen_data.gleason_score_combined

	integer

	A numeric value obtained by adding the primary and secondary patterns (grades).

	biospecimen_data.h_pylori_infection

	string

	Text term to indicate the state of the diagnosis of an individual with Helicobacter pylori infection.

	biospecimen_data.height

	integer

	The height of the patient in centimeters.

	biospecimen_data.histological_type

	string

	Text term for the structural pattern of cancer cells used to define a microscopic diagnosis.

	biospecimen_data.history_of_colon_polyps

	string

	Yes/No indicator to describe if the subject had a previous history of colon polyps as noted in the history/physical or previous endoscopic report(s).

	biospecimen_data.history_of_neoadjuvant_treatment

	string

	Text term to describe the patient’s history of neoadjuvant treatment and the kind of treatment given prior to resection of the tumor.

	biospecimen_data.hpv_calls

	string

	Results of HPV tests.

	biospecimen_data.hpv_status

	string

	Current HPV status.

	biospecimen_data.icd_10

	string

	The tenth version of the International Classification of Disease (ICD).

	biospecimen_data.icd_o_3_histology

	string

	The third edition of the International Classification of Diseases for Oncology.

	biospecimen_data.icd_o_3_site

	string

	The third edition of the International Classification of Diseases for Oncology.

	biospecimen_data.lymphatic_invasion

	string

	A yes/no indicator to ask if malignant cells are present in small or thin-walled vessels suggesting lymphatic involvement.

	biospecimen_data.lymphnodes_examined

	string

	A yes/no/unknown indicator whether a lymph node assessment was performed at the primary presentation of disease.

	biospecimen_data.lymphovascular_invasion_present

	string

	A yes/no indicator to ask if large vessel (vascular) invasion or small, thin-walled (lymphatic) invasion was detected in a tumor specimen.

	biospecimen_data.max_percent_lymphocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_monocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_necrosis

	number

	Maximum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_neutrophil_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_normal_cells

	number

	Maximum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_stromal_cells

	number

	Maximum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_tumor_cells

	number

	Maximum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_tumor_nuclei

	number

	Maximum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.menopause_status

	string

	Text term to signify the status of a woman’s menopause, the permanent cessation of menses, usually defined by 6 to 12 months of amenorrhea.

	biospecimen_data.min_percent_lymphocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of lymphcyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_monocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_necrosis

	number

	Minimum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_neutrophil_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_normal_cells

	number

	Minimum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_stromal_cells

	number

	Minimum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_tumor_cells

	number

	Minimum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_tumor_nuclei

	number

	Minimum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.mononucleotide_and_dinucleotide_marker_panel_analysis_status

	string

	Text result of microsatellite instability (MSI) testing at using a mononucleotide and dinucleotide microsatellite panel.

	biospecimen_data.neoplasm_histologic_grade

	string

	Numeric value to express the degree of abnormality of cancer cells, a measure of differentiation and aggressiveness.

	biospecimen_data.new_tumor_event_after_initial_treatment

	string

	Yes/No/Unknown indicator to identify whether a patient has had a new tumor event after initial treatment.

	biospecimen_data.num_portions

	integer

	The number of portions obtained from the sample

	biospecimen_data.num_slides

	integer

	The number of slides derived from the sample

	biospecimen_data.number_of_lymphnodes_examined

	integer

	The total number of lymph nodes removed and pathologically assessed for disease.

	biospecimen_data.number_of_lymphnodes_positive_by_he

	integer

	Numeric value to signify the count of positive lymph nodes identified through hematoxylin and eosin (H&E) staining light microscopy.

	biospecimen_data.number_pack_years_smoked

	integer

	Numeric computed value to represent lifetime tobacco exposure defined as number of cigarettes smoked per day x number of years smoked divided by 20.

	biospecimen_data.other_dx

	string

	Text term to describe the patient’s history of cancer diagnosis and the spatial location of any previous cancer occurrence.

	biospecimen_data.other_malignancy_anatomic_site

	string

	Text term describe the anatomic site of the prior or synchronous malignancy.

	biospecimen_data.other_malignancy_histological_type

	string

	Text term describe the histology and/or subtype of the prior or synchronous malignancy.

	biospecimen_data.other_malignancy_type

	string

	The type, relative occurance to the current malignancy

	biospecimen_data.pathologic_M

	string

	Code to represent the defined absence or presence of distant spread or metastases (M) to locations via vascular channels or lymphatics beyond the regional lymph nodes, using criteria established by the American Joint Committee on Cancer (AJCC).

	biospecimen_data.pathologic_N

	string

	The codes that represent the stage of cancer based on the nodes present (N stage) according to criteria based on multiple editions of the AJCC’s Cancer Staging Manual.

	biospecimen_data.pathologic_stage

	string

	The extent of a cancer, especially whether the disease has spread from the original site to other parts of the body based on AJCC staging criteria.

	biospecimen_data.pathologic_T

	string

	Code of pathological T (primary tumor) to define the size or contiguous extension of the primary tumor (T), using staging criteria from the American Joint Committee on Cancer (AJCC).

	biospecimen_data.pathology_report_uuid

	string

	The UUID of th epathology report

	biospecimen_data.person_neoplasm_cancer_status

	string

	The state or condition of an individual’s neoplasm at a particular point in time.

	biospecimen_data.pregnancies

	string

	Value to describe the number of full-term pregnancies that a woman has experienced.

	biospecimen_data.preservation_method

	string

	The method used to preserve the sample after it has been removed from a participant.

	biospecimen_data.primary_neoplasm_melanoma_dx

	string

	Text indicator to signify whether a person had a primary diagnosis of melanoma.

	biospecimen_data.primary_therapy_outcome_success

	string

	Measure of success.

	biospecimen_data.program_name

	string

	Project name, e.g. ‘TCGA’.

	biospecimen_data.project_short_name

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	biospecimen_data.psa_value

	number

	The lab value that represents the results of the most recent (post-operative) prostatic-specific antigen (PSA) in the blood.

	biospecimen_data.race

	string

	The text for reporting information about race based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.residual_tumor

	string

	Text terms to describe the status of a tissue margin following surgical resection.

	biospecimen_data.sample_barcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	biospecimen_data.sample_gdc_id

	string

	The GDC assigned id for the sample

	biospecimen_data.sample_type

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	biospecimen_data.stopped_smoking_year

	integer

	The year in which the participant quit smoking.

	biospecimen_data.summary_file_count

	integer

	The count of files associated with the sample

	biospecimen_data.tobacco_smoking_history

	string

	Category describing current smoking status and smoking history as self-reported by a patient.

	biospecimen_data.tss_code

	string

	A TSS ID is an alphanumeric code that uniquely identifies a TSS and its associated study

	biospecimen_data.tumor_tissue_site

	string

	Text term that describes the anatomic site of the tumor or disease.

	biospecimen_data.tumor_type

	string

	Text term to identify the morphologic subtype of papillary renal cell carcinoma.

	biospecimen_data.venous_invasion

	string

	The result of an assessment using the Weiss histopathologic criteria.

	biospecimen_data.vital_status

	string

	The survival state of the person registered on the protocol.

	biospecimen_data.weight

	integer

	The weight of the patient measured in kilograms.

	biospecimen_data.year_of_diagnosis

	integer

	Numeric value to represent the year of an individual’s initial pathologic diagnosis of cancer.

	biospecimen_data.year_of_tobacco_smoking_onset

	integer

	The year in which the participant began smoking.

	case

	string

	Case barcode.

	data_details[]

	list

	List of information about each file associated with the sample barcode.

	data_details[].access

	string

	An indication of the security protocol necessary to fulfill in order to access the data from the file, e.g. open, controlled.

	data_details[].analysis_workflow_type

	string

	The type of workflow used to generate the data file, e.g. ‘BWA-aln’, ‘STAR 2-Pass’, ‘BWA with Mark Duplicates and Cocleaning’

	data_details[].data_category

	string

	The higher level categorization of the data_type in the file, e.g. ‘Biospecimen’, ‘Clinical’, ‘Raw sequencing data’, ‘Simple nucleotide variation’

	data_details[].data_format

	string

	The format of the data file, e.g. ‘BAM’, ‘BCR XML’, ‘TXT’

	data_details[].data_type

	string

	Data type stored in Google Cloud Storage, e.g. ‘Clinical Supplement’, ‘Biospecimen Supplement’, ‘Aligned reads’, ‘Genotypes’, ‘Diagnostic image’

	data_details[].disease_code

	string

	The disease abbeviation, e.g. ‘ACC’, ‘UVM’, ‘ALL’, ‘WT’

	data_details[].endpoint_type

	string

	The GDC files API the data file information was gottern from, e.g. ‘legacy’, ‘current’

	data_details[].experimental_strategy

	string

	The sequencing, array or other strategy used to generate the data file, e.g. ‘RNA-Seq’, ‘WGS’, ‘Genotyping array’

	data_details[].file_gdc_id

	string

	The GDC assigned id for the file

	data_details[].file_name

	string

	Name of the datafile stored on the GDC system.

	data_details[].file_name_key

	string

	Google Cloud Storage path to file.

	data_details[].file_size

	string

	The size of the file

	data_details[].index_file_name

	string

	For BAM files, the name of its index file

	data_details[].platform

	string

	The sequencing or array platform used, e.g. Illumina HiSeq, Ion Torrent PGM, Affymetrix SNP Array 6.0.

	data_details[].program_name

	string

	The program for which the data was generated, e.g. ‘CCLE’, ‘TARGET’,’TCGA’.

	data_details[].project_short_name

	string

	The id of the project, e.g. ‘CCLE-ACC’, ‘CCLE-UVM’, ‘TARGET-ALL-P1’, ‘ TARGET-WT’, ‘TCGA-ACC’, ‘TCGA-UVM’

	data_details[].sample_barcode

	string

	Sample barcode.

	data_details[].sample_gdc_id

	string

	The GDC assigned id for the sample

	data_details[].sample_type

	string

	The sample type, e.g. ‘01’, ‘10’, ‘11’

	data_details_count

	integer

	Number of files associated with the sample barcode.

Given a sample barcode (of length 16, eg TCGA-B9-7268-01A), this endpoint returns all available “biospecimen” information about this sample, the associated patient barcode, a list of associated aliquots, and a list of “data_details” blocks describing each of the data files associated with this sample

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v2/samples/TCGA-ZH-A8Y6-1A

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_api/v2/isb_cgc_api.samples.get?sample_barcode=TCGA-ZH-A8Y6-01A&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_api'
 version = 'v2'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().get(sample_barcode='TCGA-W5-AA2R-01A').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_api/v2/samples/{sample_barcode}

Parameters

	Parameter name

	Value

	Description

	pipeline

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "biospecimen_data": {
 "age_at_initial_pathologic_diagnosis": integer,
 "anatomic_neoplasm_subdivision": string,
 "avg_percent_lymphocyte_infiltration": number,
 "avg_percent_monocyte_infiltration": number,
 "avg_percent_necrosis": number,
 "avg_percent_neutrophil_infiltration": number,
 "avg_percent_normal_cells": number,
 "avg_percent_stromal_cells": number,
 "avg_percent_tumor_cells": number,
 "avg_percent_tumor_nuclei": number,
 "batch_number": integer,
 "bcr": string,
 "BMI": number,
 "clinical_M": string,
 "clinical_N": string,
 "clinical_stage": string,
 "clinical_T": string,
 "colorectal_cancer": string,
 "country": string,
 "days_to_birth": integer,
 "days_to_collection": integer,
 "days_to_death": integer,
 "days_to_initial_pathologic_diagnosis": integer,
 "days_to_last_followup": integer,
 "days_to_last_known_alive": integer,
 "days_to_submitted_specimen_dx": integer,
 "ethnicity": string,
 "frozen_specimen_anatomic_site": string,
 "gender": string,
 "gleason_score_combined": integer,
 "has_27k": boolean,
 "has_450k": boolean,
 "has_BCGSC_GA_RNASeq": boolean,
 "has_BCGSC_HiSeq_RNASeq": boolean,
 "has_GA_miRNASeq": boolean,
 "has_HiSeq_miRnaSeq": boolean,
 "has_Illumina_DNASeq": boolean,
 "has_RPPA": boolean,
 "has_SNP6": boolean,
 "has_UNC_GA_RNASeq": boolean,
 "has_UNC_HiSeq_RNASeq": boolean,
 "height": integer,
 "histological_type": string,
 "history_of_colon_polyps": string,
 "history_of_neoadjuvant_treatment": string,
 "history_of_prior_malignancy": string,
 "hpv_calls": string,
 "hpv_status": string,
 "icd_10": string,
 "icd_o_3_histology": string,
 "icd_o_3_site": string,
 "lymphatic_invasion": string,
 "lymphnodes_examined": string,
 "lymphovascular_invasion_present": string,
 "max_percent_lymphocyte_infiltration": number,
 "max_percent_monocyte_infiltration": number,
 "max_percent_necrosis": number,
 "max_percent_neutrophil_infiltration": number,
 "max_percent_normal_cells": number,
 "max_percent_stromal_cells": number,
 "max_percent_tumor_cells": number,
 "max_percent_tumor_nuclei": number,
 "menopause_status": string,
 "min_percent_lymphocyte_infiltration": number,
 "min_percent_monocyte_infiltration": number,
 "min_percent_necrosis": number,
 "min_percent_neutrophil_infiltration": number,
 "min_percent_normal_cells": number,
 "min_percent_stromal_cells": number,
 "min_percent_tumor_cells": number,
 "min_percent_tumor_nuclei": number,
 "mononucleotide_and_dinucleotide_marker_panel_analysis_status": string,
 "mononucleotide_marker_panel_analysis_status": string,
 "neoplasm_histologic_grade": string,
 "new_tumor_event_after_initial_treatment": string,
 "number_of_lymphnodes_examined": integer,
 "number_of_lymphnodes_positive_by_he": integer,
 "number_pack_years_smoked": integer,
 "ParticipantBarcode": string,
 "pathologic_M": string,
 "pathologic_N": string,
 "pathologic_stage": string,
 "pathologic_T": string,
 "person_neoplasm_cancer_status": string,
 "pregnancies": string,
 "primary_neoplasm_melanoma_dx": string,
 "primary_therapy_outcome_success": string,
 "prior_dx": string,
 "Project": string,
 "psa_value": number,
 "race": string,
 "residual_tumor": string,
 "SampleBarcode": string,
 "SampleTypeCode": string,
 "Study": string,
 "tobacco_smoking_history": string,
 "TSSCode": string,
 "tumor_tissue_site": string,
 "tumor_type": string,
 "vital_status": string,
 "weight": integer,
 "weiss_venous_invasion": string,
 "year_of_initial_pathologic_diagnosis": integer
 },
 "data_details": [
 {
 "cloud_storage_path": string,
 "DataCenterName": string,
 "DataCenterType": string,
 "DataFileName": string,
 "DataFileNameKey": string,
 "DatafileUploaded": string,
 "DataLevel": string,
 "Datatype": string,
 "GenomeReference": string,
 "GG_dataset_id": string,
 "GG_readgroupset_id": string,
 "Pipeline": string,
 "Platform": string,
 "platform_full_name": string,
 "Project": string,
 "Repository": string,
 "SampleBarcode": string,
 "SDRFFileName": string,
 "SecurityProtocol": string
 }
],
 "data_details_count": integer,
 "patient": string
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this participant.

	biospecimen_data

	nested object

	Biospecimen data about the sample.

	biospecimen_data.age_at_initial_pathologic_diagnosis

	integer

	Age at which a condition or disease was first diagnosed in years.

	biospecimen_data.anatomic_neoplasm_subdivision

	string

	Text term to describe the spatial location, subdivisions and/or anatomic site name of a tumor.

	biospecimen_data.avg_percent_lymphocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_monocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_necrosis

	number

	Average in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_neutrophil_infiltration

	number

	Average in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_normal_cells

	number

	Average in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_stromal_cells

	number

	Average in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_tumor_cells

	number

	Average in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_tumor_nuclei

	number

	Average in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.batch_number

	integer

	Groups samples by the batch they were processed in.

	biospecimen_data.bcr

	string

	A TCGA center where samples are carefully catalogued, processed, quality-checked and stored along with participant clinical information.

	biospecimen_data.BMI

	number

	Body Mass Index

	biospecimen_data.clinical_M

	string

	Extent of the distant metastasis for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.clinical_N

	string

	Extent of the regional lymph node involvement for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.clinical_stage

	string

	Stage group determined from clinical information on the tumor (T), regional node (N) and metastases (M) and by grouping cases with similar prognosis.

	biospecimen_data.clinical_T

	string

	Extent of the primary cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.colorectal_cancer

	string

	Text term to signify whether a patient has been diagnosed with colorectal cancer.

	biospecimen_data.country

	string

	Text to identify the name of the state, province, or country in which the sample was procured.

	biospecimen_data.days_to_birth

	integer

	Time interval from a person’s date of birth to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_collection

	integer

	

	biospecimen_data.days_to_death

	integer

	Time interval from a person’s date of death to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_initial_pathologic_diagnosis

	integer

	Numeric value to represent the day of an individual’s initial pathologic diagnosis of cancer.

	biospecimen_data.days_to_last_followup

	integer

	Time interval from the date of last followup to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_last_known_alive

	integer

	

	biospecimen_data.days_to_submitted_specimen_dx

	integer

	Time interval from the date of diagnosis of the submitted sample to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.ethnicity

	string

	The text for reporting information about ethnicity based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.frozen_specimen_anatomic_site

	string

	Text description of the origin and the anatomic site regarding the frozen biospecimen tumor tissue sample.

	biospecimen_data.gender

	string

	Text designations that identify gender.

	biospecimen_data.gleason_score_combined

	integer

	

	biospecimen_data.has_27k

	boolean

	Indicates if a sample has methylation data from the Illumina 27k platform. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_450k

	boolean

	Indicates if a sample has methylation data from the Illumina 450k platform. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_BCGSC_GA_RNASeq

	boolean

	Indicates if a sample has RNA sequencing data from the IlluminaGA platform and the BCGSC pipeline. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_BCGSC_HiSeq_RNASeq

	boolean

	Indicates if a sample has RNA sequencing data from the IlluminaHiSeq platform and the BCGSC pipeline. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_GA_miRNASeq

	boolean

	Indicates if a sample has microRNA data from the IlluminaGA platform. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_HiSeq_miRnaSeq

	boolean

	Indicates if a sample has microRNA data from the IlluminaHiSeq platform. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_Illumina_DNASeq

	boolean

	Indicates if a sample has gene sequencing data. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_RPPA

	boolean

	Indicates if a sample has protein array data. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_SNP6

	boolean

	Indicates if a sample has copy number data. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_UNC_GA_RNASeq

	boolean

	Indicates if a sample has RNA sequencing data from the IlluminaGA platform and the UNC pipeline. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.has_UNC_HiSeq_RNASeq

	boolean

	Indicates if a sample has RNA sequencing data from the IlluminaHiSeq platform and the UNC pipeline. ‘True’, ‘False’, or ‘None’.

	biospecimen_data.height

	integer

	The height of the patient in centimeters.

	biospecimen_data.histological_type

	string

	Text term for the structural pattern of cancer cells used to define a microscopic diagnosis.

	biospecimen_data.history_of_colon_polyps

	string

	Yes/No indicator to describe if the subject had a previous history of colon polyps as noted in the history/physical or previous endoscopic report(s).

	biospecimen_data.history_of_neoadjuvant_treatment

	string

	Text term to describe the patient’s history of neoadjuvant treatment and the kind of treatment given prior to resection of the tumor.

	biospecimen_data.history_of_prior_malignancy

	string

	Text term to describe the patient’s history of prior cancer diagnosis and the spatial location of any previous cancer occurrence.

	biospecimen_data.hpv_calls

	string

	Results of HPV tests.

	biospecimen_data.hpv_status

	string

	Current HPV status.

	biospecimen_data.icd_10

	string

	The tenth version of the International Classification of Disease (ICD).

	biospecimen_data.icd_o_3_histology

	string

	The third edition of the International Classification of Diseases for Oncology.

	biospecimen_data.icd_o_3_site

	string

	The third edition of the International Classification of Diseases for Oncology.

	biospecimen_data.lymphatic_invasion

	string

	A yes/no indicator to ask if malignant cells are present in small or thin-walled vessels suggesting lymphatic involvement.

	biospecimen_data.lymphnodes_examined

	string

	A yes/no/unknown indicator whether a lymph node assessment was performed at the primary presentation of disease.

	biospecimen_data.lymphovascular_invasion_present

	string

	A yes/no indicator to ask if large vessel (vascular) invasion or small, thin-walled (lymphatic) invasion was detected in a tumor specimen.

	biospecimen_data.max_percent_lymphocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_monocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_necrosis

	number

	Maximum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_neutrophil_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_normal_cells

	number

	Maximum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_stromal_cells

	number

	Maximum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_tumor_cells

	number

	Maximum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_tumor_nuclei

	number

	Maximum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.menopause_status

	string

	Text term to signify the status of a woman’s menopause, the permanent cessation of menses, usually defined by 6 to 12 months of amenorrhea.

	biospecimen_data.min_percent_lymphocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of lymphcyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_monocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_necrosis

	number

	Minimum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_neutrophil_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_normal_cells

	number

	Minimum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_stromal_cells

	number

	Minimum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_tumor_cells

	number

	Minimum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_tumor_nuclei

	number

	Minimum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.mononucleotide_and_dinucleotide_marker_panel_analysis_status

	string

	Text result of microsatellite instability (MSI) testing at using a mononucleotide and dinucleotide microsatellite panel.

	biospecimen_data.mononucleotide_marker_panel_analysis_status

	string

	Text result of microsatellite instability (MSI) testing using a mononucleotide microsatellite panel.

	biospecimen_data.neoplasm_histologic_grade

	string

	Numeric value to express the degree of abnormality of cancer cells, a measure of differentiation and aggressiveness.

	biospecimen_data.new_tumor_event_after_initial_treatment

	string

	Yes/No/Unknown indicator to identify whether a patient has had a new tumor event after initial treatment.

	biospecimen_data.number_of_lymphnodes_examined

	integer

	The total number of lymph nodes removed and pathologically assessed for disease.

	biospecimen_data.number_of_lymphnodes_positive_by_he

	integer

	Numeric value to signify the count of positive lymph nodes identified through hematoxylin and eosin (H&E) staining light microscopy.

	biospecimen_data.number_pack_years_smoked

	integer

	

	biospecimen_data.ParticipantBarcode

	string

	Participant barcode.

	biospecimen_data.pathologic_M

	string

	Code to represent the defined absence or presence of distant spread or metastases (M) to locations via vascular channels or lymphatics beyond the regional lymph nodes, using criteria established by the American Joint Committee on Cancer (AJCC).

	biospecimen_data.pathologic_N

	string

	The codes that represent the stage of cancer based on the nodes present (N stage) according to criteria based on multiple editions of the AJCC’s Cancer Staging Manual.

	biospecimen_data.pathologic_stage

	string

	The extent of a cancer, especially whether the disease has spread from the original site to other parts of the body based on AJCC staging criteria.

	biospecimen_data.pathologic_T

	string

	Code of pathological T (primary tumor) to define the size or contiguous extension of the primary tumor (T), using staging criteria from the American Joint Committee on Cancer (AJCC).

	biospecimen_data.person_neoplasm_cancer_status

	string

	The state or condition of an individual’s neoplasm at a particular point in time.

	biospecimen_data.pregnancies

	string

	Value to describe the number of full-term pregnancies that a woman has experienced.

	biospecimen_data.primary_neoplasm_melanoma_dx

	string

	Text indicator to signify whether a person had a primary diagnosis of melanoma.

	biospecimen_data.primary_therapy_outcome_success

	string

	Measure of success.

	biospecimen_data.prior_dx

	string

	Text term to describe the patient’s history of prior cancer diagnosis and the spatial location of any previous cancer occurrence.

	biospecimen_data.Project

	string

	Project name, e.g. ‘TCGA’.

	biospecimen_data.psa_value

	number

	The lab value that represents the results of the most recent (post-operative) prostatic-specific antigen (PSA) in the blood.

	biospecimen_data.race

	string

	The text for reporting information about race based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.residual_tumor

	string

	Text terms to describe the status of a tissue margin following surgical resection.

	biospecimen_data.SampleBarcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	biospecimen_data.SampleTypeCode

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	biospecimen_data.Study

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	biospecimen_data.tobacco_smoking_history

	string

	Category describing current smoking status and smoking history as self-reported by a patient.

	biospecimen_data.TSSCode

	string

	

	biospecimen_data.tumor_tissue_site

	string

	Text term that describes the anatomic site of the tumor or disease.

	biospecimen_data.tumor_type

	string

	Text term to identify the morphologic subtype of papillary renal cell carcinoma.

	biospecimen_data.vital_status

	string

	The survival state of the person registered on the protocol.

	biospecimen_data.weight

	integer

	The weight of the patient measured in kilograms.

	biospecimen_data.weiss_venous_invasion

	string

	The result of an assessment using the Weiss histopathologic criteria.

	biospecimen_data.year_of_initial_pathologic_diagnosis

	integer

	Numeric value to represent the year of an individual’s initial pathologic diagnosis of cancer.

	data_details[]

	list

	List of information about each file associated with the sample barcode.

	data_details[].cloud_storage_path

	string

	Google Cloud Storage path to file.

	data_details[].DataCenterName

	string

	Short name of the contributing data center, e.g. bcgsc.ca.

	data_details[].DataCenterType

	string

	Abbreviation of the type of contributing data center, e.g. cgcc.

	data_details[].DataFileName

	string

	Name of the datafile stored on the DCC file system.

	data_details[].DataFileNameKey

	string

	Key into the ISB-CGC GCS bucket for this file.

	data_details[].DatafileUploaded

	string

	Whether the file fit requirements to be uploaded into the project.

	data_details[].DataLevel

	string

	Level of the type of data, depending on where it is stored in the DCC directory structure. Data levels are defined by TCGA DCC.

	data_details[].Datatype

	string

	Data type, e.g. Complete Clinical Set, CNV (SNP Array), DNA Methylation, Expression-Protein, Fragment Analysis Results, miRNASeq, Protected Mutations, RNASeq, RNASeqV2, Somatic Mutations, TotalRNASeqV.

	data_details[].GenomeReference

	string

	Allows a center to associate results with a specific genome build that was used as the basis for analysis, e.g. hg19 (GRCh37)

	data_details[].Pipeline

	string

	A combination of the center and the platform that can distinguish between two ways of performing the sequencing or assay for the same platform, e.g. bcgsc.ca__miRNASeq.

	data_details[].Platform

	string

	A platform (within the scope of TCGA) is a vendor-specific technology for assaying or sequencing that could possibly be customized by a GSC or CGCC, e.g. IlluminaHiSeq_miRNASeq.

	data_details[].platform_full_name

	string

	The full name of the sequencing platform used, e.g. Illumina HiSeq 2000, Ion Torrent PGM, AB SOLiD System 2.0.

	data_details[].Project

	string

	The study for which the data was generated, e.g. TCGA.

	data_details[].Repository

	string

	A storage location where files are deposited and made available, e.g. DCC, CGHub.

	data_details[].SampleBarcode

	string

	Sample barcode.

	data_details[].SDRFFileName

	string

	Name of SDRF file stored on the DCC file system, e.g. bcgsc.ca_KIRC.IlluminaHiSeq_miRNASeq.sdrf.txt

	data_details[].SecurityProtocol

	string

	An indication of the security protocol necessary to fulfill in order to access the data from the file, e.g. DBGap Protected Access, DBGap Open Access

	data_details_count

	integer

	Number of files associated with the sample barcode.

	patient

	string

	Patient barcode.

Given a sample barcode (of length 16, eg TCGA-B9-7268-01A), this endpoint returns all available “biospecimen” information about this sample, the associated case barcode, a list of associated aliquots, and a list of “data_details” blocks describing each of the data files associated with this sample

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/TCGA-ZH-A8Y6-1A

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.samples.get?sample_barcode=TCGA-ZH-A8Y6-01A&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().get(sample_barcode='TCGA-W5-AA2R-01A').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/{sample_barcode}

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	endpoint_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "biospecimen_data": {
 "age_at_diagnosis": integer,
 "age_began_smoking_in_years": integer,
 "anatomic_neoplasm_subdivision": string,
 "avg_percent_lymphocyte_infiltration": number,
 "avg_percent_monocyte_infiltration": number,
 "avg_percent_necrosis": number,
 "avg_percent_neutrophil_infiltration": number,
 "avg_percent_normal_cells": number,
 "avg_percent_stromal_cells": number,
 "avg_percent_tumor_cells": number,
 "avg_percent_tumor_nuclei": number,
 "batch_number": integer,
 "bcr": string,
 "bmi": number,
 "case_barcode": string,
 "case_gdc_id": string,
 "clinical_M": string,
 "clinical_N": string,
 "clinical_stage": string,
 "clinical_T": string,
 "colorectal_cancer": string,
 "country": string,
 "days_to_birth": integer,
 "days_to_collection": integer,
 "days_to_death": integer,
 "days_to_initial_pathologic_diagnosis": integer,
 "days_to_last_followup": integer,
 "days_to_last_known_alive": integer,
 "days_to_sample_procurement": integer,
 "days_to_submitted_specimen_dx": integer,
 "disease_code": string,
 "endpoint_type": string,
 "ethnicity": string,
 "gender": string,
 "gleason_score_combined": integer,
 "h_pylori_infection": string,
 "height": integer,
 "histological_type": string,
 "history_of_colon_polyps": string,
 "history_of_neoadjuvant_treatment": string,
 "hpv_calls": string,
 "hpv_status": string,
 "icd_10": string,
 "icd_o_3_histology": string,
 "icd_o_3_site": string,
 "lymphatic_invasion": string,
 "lymphnodes_examined": string,
 "lymphovascular_invasion_present": string,
 "max_percent_lymphocyte_infiltration": number,
 "max_percent_monocyte_infiltration": number,
 "max_percent_necrosis": number,
 "max_percent_neutrophil_infiltration": number,
 "max_percent_normal_cells": number,
 "max_percent_stromal_cells": number,
 "max_percent_tumor_cells": number,
 "max_percent_tumor_nuclei": number,
 "menopause_status": string,
 "min_percent_lymphocyte_infiltration": number,
 "min_percent_monocyte_infiltration": number,
 "min_percent_necrosis": number,
 "min_percent_neutrophil_infiltration": number,
 "min_percent_normal_cells": number,
 "min_percent_stromal_cells": number,
 "min_percent_tumor_cells": number,
 "min_percent_tumor_nuclei": number,
 "mononucleotide_and_dinucleotide_marker_panel_analysis_status": string,
 "neoplasm_histologic_grade": string,
 "new_tumor_event_after_initial_treatment": string,
 "num_portions": integer,
 "num_slides": integer,
 "number_of_lymphnodes_examined": integer,
 "number_of_lymphnodes_positive_by_he": integer,
 "number_pack_years_smoked": integer,
 "other_dx": string,
 "other_malignancy_anatomic_site": string,
 "other_malignancy_histological_type": string,
 "other_malignancy_type": string,
 "pathologic_M": string,
 "pathologic_N": string,
 "pathologic_stage": string,
 "pathologic_T": string,
 "pathology_report_uuid": string,
 "person_neoplasm_cancer_status": string,
 "pregnancies": string,
 "preservation_method": string,
 "primary_neoplasm_melanoma_dx": string,
 "primary_therapy_outcome_success": string,
 "program_name": string,
 "project_short_name": string,
 "psa_value": number,
 "race": string,
 "residual_tumor": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string,
 "stopped_smoking_year": integer,
 "summary_file_count": integer,
 "tobacco_smoking_history": string,
 "tss_code": string,
 "tumor_tissue_site": string,
 "tumor_type": string,
 "venous_invasion": string,
 "vital_status": string,
 "weight": integer,
 "year_of_diagnosis": integer,
 "year_of_tobacco_smoking_onset": integer
 },
 "case": string,
 "data_details": [
 {
 "access": string,
 "analysis_workflow_type": string,
 "data_category": string,
 "data_format": string,
 "data_type": string,
 "disease_code": string,
 "endpoint_type": string,
 "experimental_strategy": string,
 "file_gdc_id": string,
 "file_name": string,
 "file_name_key": string,
 "file_size": string,
 "index_file_name": string,
 "platform": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string
 }
],
 "data_details_count": integer
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this participant.

	biospecimen_data

	nested object

	Biospecimen data about the sample.

	biospecimen_data.age_at_diagnosis

	integer

	Age at which a condition or disease was first diagnosed in years.

	biospecimen_data.age_began_smoking_in_years

	integer

	Age began smoking cigarettes expressed in number of years since birth.

	biospecimen_data.anatomic_neoplasm_subdivision

	string

	Text term to describe the spatial location, subdivisions and/or anatomic site name of a tumor.

	biospecimen_data.avg_percent_lymphocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_monocyte_infiltration

	number

	Average in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_necrosis

	number

	Average in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_neutrophil_infiltration

	number

	Average in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_normal_cells

	number

	Average in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_stromal_cells

	number

	Average in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_tumor_cells

	number

	Average in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.avg_percent_tumor_nuclei

	number

	Average in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.batch_number

	integer

	Groups samples by the batch they were processed in.

	biospecimen_data.bcr

	string

	A TCGA center where samples are carefully catalogued, processed, quality-checked and stored along with participant clinical information.

	biospecimen_data.bmi

	number

	Body Mass Index

	biospecimen_data.case_barcode

	string

	Case barcode.

	biospecimen_data.case_gdc_id

	string

	The GDC assigned id for the case

	biospecimen_data.clinical_M

	string

	Extent of the distant metastasis for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.clinical_N

	string

	Extent of the regional lymph node involvement for the cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.clinical_stage

	string

	Stage group determined from clinical information on the tumor (T), regional node (N) and metastases (M) and by grouping cases with similar prognosis.

	biospecimen_data.clinical_T

	string

	Extent of the primary cancer based on evidence obtained from clinical assessment parameters determined prior to treatment.

	biospecimen_data.colorectal_cancer

	string

	Text term to signify whether a patient has been diagnosed with colorectal cancer.

	biospecimen_data.country

	string

	Text to identify the name of the state, province, or country in which the sample was procured.

	biospecimen_data.days_to_birth

	integer

	Time interval from a person’s date of birth to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_collection

	integer

	The number of days between diagnosis and tissue collection.

	biospecimen_data.days_to_death

	integer

	Time interval from a person’s date of death to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_initial_pathologic_diagnosis

	integer

	Numeric value to represent the day of an individual’s initial pathologic diagnosis of cancer.

	biospecimen_data.days_to_last_followup

	integer

	Time interval from the date of last followup to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_last_known_alive

	integer

	The number of days between diagnosis and when the individual was last known to be alive.

	biospecimen_data.days_to_sample_procurement

	integer

	Indicates the days to sample procurement for the submitted sample in relation to the date of initial diagnosis

	biospecimen_data.days_to_submitted_specimen_dx

	integer

	Time interval from the date of diagnosis of the submitted sample to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.disease_code

	string

	Text term referring to the cancer type

	biospecimen_data.endpoint_type

	string

	Which type of GDC Case API was used, either legacy or current

	biospecimen_data.ethnicity

	string

	The text for reporting information about ethnicity based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.gender

	string

	Text designations that identify gender.

	biospecimen_data.gleason_score_combined

	integer

	A numeric value obtained by adding the primary and secondary patterns (grades).

	biospecimen_data.h_pylori_infection

	string

	Text term to indicate the state of the diagnosis of an individual with Helicobacter pylori infection.

	biospecimen_data.height

	integer

	The height of the patient in centimeters.

	biospecimen_data.histological_type

	string

	Text term for the structural pattern of cancer cells used to define a microscopic diagnosis.

	biospecimen_data.history_of_colon_polyps

	string

	Yes/No indicator to describe if the subject had a previous history of colon polyps as noted in the history/physical or previous endoscopic report(s).

	biospecimen_data.history_of_neoadjuvant_treatment

	string

	Text term to describe the patient’s history of neoadjuvant treatment and the kind of treatment given prior to resection of the tumor.

	biospecimen_data.hpv_calls

	string

	Results of HPV tests.

	biospecimen_data.hpv_status

	string

	Current HPV status.

	biospecimen_data.icd_10

	string

	The tenth version of the International Classification of Disease (ICD).

	biospecimen_data.icd_o_3_histology

	string

	The third edition of the International Classification of Diseases for Oncology.

	biospecimen_data.icd_o_3_site

	string

	The third edition of the International Classification of Diseases for Oncology.

	biospecimen_data.lymphatic_invasion

	string

	A yes/no indicator to ask if malignant cells are present in small or thin-walled vessels suggesting lymphatic involvement.

	biospecimen_data.lymphnodes_examined

	string

	A yes/no/unknown indicator whether a lymph node assessment was performed at the primary presentation of disease.

	biospecimen_data.lymphovascular_invasion_present

	string

	A yes/no indicator to ask if large vessel (vascular) invasion or small, thin-walled (lymphatic) invasion was detected in a tumor specimen.

	biospecimen_data.max_percent_lymphocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of lymphocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_monocyte_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_necrosis

	number

	Maximum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_neutrophil_infiltration

	number

	Maximum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_normal_cells

	number

	Maximum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_stromal_cells

	number

	Maximum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_tumor_cells

	number

	Maximum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.max_percent_tumor_nuclei

	number

	Maximum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.menopause_status

	string

	Text term to signify the status of a woman’s menopause, the permanent cessation of menses, usually defined by 6 to 12 months of amenorrhea.

	biospecimen_data.min_percent_lymphocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of lymphcyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_monocyte_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of monocyte infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_necrosis

	number

	Minimum in the series of numeric values to represent the percentage of cell death in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_neutrophil_infiltration

	number

	Minimum in the series of numeric values to represent the percentage of neutrophil infiltration in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_normal_cells

	number

	Minimum in the series of numeric values to represent the percentage of normal cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_stromal_cells

	number

	Minimum in the series of numeric values to represent the percentage of stromal cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_tumor_cells

	number

	Minimum in the series of numeric values to represent the percentage of tumor cells in a malignant tumor sample or specimen.

	biospecimen_data.min_percent_tumor_nuclei

	number

	Minimum in the series of numeric values to represent the percentage of tumor nuclei in a malignant tumor sample or specimen.

	biospecimen_data.mononucleotide_and_dinucleotide_marker_panel_analysis_status

	string

	Text result of microsatellite instability (MSI) testing at using a mononucleotide and dinucleotide microsatellite panel.

	biospecimen_data.neoplasm_histologic_grade

	string

	Numeric value to express the degree of abnormality of cancer cells, a measure of differentiation and aggressiveness.

	biospecimen_data.new_tumor_event_after_initial_treatment

	string

	Yes/No/Unknown indicator to identify whether a patient has had a new tumor event after initial treatment.

	biospecimen_data.num_portions

	integer

	The number of portions obtained from the sample

	biospecimen_data.num_slides

	integer

	The number of slides derived from the sample

	biospecimen_data.number_of_lymphnodes_examined

	integer

	The total number of lymph nodes removed and pathologically assessed for disease.

	biospecimen_data.number_of_lymphnodes_positive_by_he

	integer

	Numeric value to signify the count of positive lymph nodes identified through hematoxylin and eosin (H&E) staining light microscopy.

	biospecimen_data.number_pack_years_smoked

	integer

	Numeric computed value to represent lifetime tobacco exposure defined as number of cigarettes smoked per day x number of years smoked divided by 20.

	biospecimen_data.other_dx

	string

	Text term to describe the patient’s history of cancer diagnosis and the spatial location of any previous cancer occurrence.

	biospecimen_data.other_malignancy_anatomic_site

	string

	Text term describe the anatomic site of the prior or synchronous malignancy.

	biospecimen_data.other_malignancy_histological_type

	string

	Text term describe the histology and/or subtype of the prior or synchronous malignancy.

	biospecimen_data.other_malignancy_type

	string

	The type, relative occurance to the current malignancy

	biospecimen_data.pathologic_M

	string

	Code to represent the defined absence or presence of distant spread or metastases (M) to locations via vascular channels or lymphatics beyond the regional lymph nodes, using criteria established by the American Joint Committee on Cancer (AJCC).

	biospecimen_data.pathologic_N

	string

	The codes that represent the stage of cancer based on the nodes present (N stage) according to criteria based on multiple editions of the AJCC’s Cancer Staging Manual.

	biospecimen_data.pathologic_stage

	string

	The extent of a cancer, especially whether the disease has spread from the original site to other parts of the body based on AJCC staging criteria.

	biospecimen_data.pathologic_T

	string

	Code of pathological T (primary tumor) to define the size or contiguous extension of the primary tumor (T), using staging criteria from the American Joint Committee on Cancer (AJCC).

	biospecimen_data.pathology_report_uuid

	string

	The UUID of th epathology report

	biospecimen_data.person_neoplasm_cancer_status

	string

	The state or condition of an individual’s neoplasm at a particular point in time.

	biospecimen_data.pregnancies

	string

	Value to describe the number of full-term pregnancies that a woman has experienced.

	biospecimen_data.preservation_method

	string

	The method used to preserve the sample after it has been removed from a participant.

	biospecimen_data.primary_neoplasm_melanoma_dx

	string

	Text indicator to signify whether a person had a primary diagnosis of melanoma.

	biospecimen_data.primary_therapy_outcome_success

	string

	Measure of success.

	biospecimen_data.program_name

	string

	Project name, e.g. ‘TCGA’.

	biospecimen_data.project_short_name

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	biospecimen_data.psa_value

	number

	The lab value that represents the results of the most recent (post-operative) prostatic-specific antigen (PSA) in the blood.

	biospecimen_data.race

	string

	The text for reporting information about race based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.residual_tumor

	string

	Text terms to describe the status of a tissue margin following surgical resection.

	biospecimen_data.sample_barcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	biospecimen_data.sample_gdc_id

	string

	The GDC assigned id for the sample

	biospecimen_data.sample_type

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	biospecimen_data.stopped_smoking_year

	integer

	The year in which the participant quit smoking.

	biospecimen_data.summary_file_count

	integer

	The count of files associated with the sample

	biospecimen_data.tobacco_smoking_history

	string

	Category describing current smoking status and smoking history as self-reported by a patient.

	biospecimen_data.tss_code

	string

	A TSS ID is an alphanumeric code that uniquely identifies a TSS and its associated study

	biospecimen_data.tumor_tissue_site

	string

	Text term that describes the anatomic site of the tumor or disease.

	biospecimen_data.tumor_type

	string

	Text term to identify the morphologic subtype of papillary renal cell carcinoma.

	biospecimen_data.venous_invasion

	string

	The result of an assessment using the Weiss histopathologic criteria.

	biospecimen_data.vital_status

	string

	The survival state of the person registered on the protocol.

	biospecimen_data.weight

	integer

	The weight of the patient measured in kilograms.

	biospecimen_data.year_of_diagnosis

	integer

	Numeric value to represent the year of an individual’s initial pathologic diagnosis of cancer.

	biospecimen_data.year_of_tobacco_smoking_onset

	integer

	The year in which the participant began smoking.

	case

	string

	Case barcode.

	data_details[]

	list

	List of information about each file associated with the sample barcode.

	data_details[].access

	string

	An indication of the security protocol necessary to fulfill in order to access the data from the file, e.g. open, controlled.

	data_details[].analysis_workflow_type

	string

	The type of workflow used to generate the data file, e.g. ‘BWA-aln’, ‘STAR 2-Pass’, ‘BWA with Mark Duplicates and Cocleaning’

	data_details[].data_category

	string

	The higher level categorization of the data_type in the file, e.g. ‘Biospecimen’, ‘Clinical’, ‘Raw sequencing data’, ‘Simple nucleotide variation’

	data_details[].data_format

	string

	The format of the data file, e.g. ‘BAM’, ‘BCR XML’, ‘TXT’

	data_details[].data_type

	string

	Data type stored in Google Cloud Storage, e.g. ‘Clinical Supplement’, ‘Biospecimen Supplement’, ‘Aligned reads’, ‘Genotypes’, ‘Diagnostic image’

	data_details[].disease_code

	string

	The disease abbeviation, e.g. ‘ACC’, ‘UVM’, ‘ALL’, ‘WT’

	data_details[].endpoint_type

	string

	The GDC files API the data file information was gottern from, e.g. ‘legacy’, ‘current’

	data_details[].experimental_strategy

	string

	The sequencing, array or other strategy used to generate the data file, e.g. ‘RNA-Seq’, ‘WGS’, ‘Genotyping array’

	data_details[].file_gdc_id

	string

	The GDC assigned id for the file

	data_details[].file_name

	string

	Name of the datafile stored on the GDC system.

	data_details[].file_name_key

	string

	Google Cloud Storage path to file.

	data_details[].file_size

	string

	The size of the file

	data_details[].index_file_name

	string

	For BAM files, the name of its index file

	data_details[].platform

	string

	The sequencing or array platform used, e.g. Illumina HiSeq, Ion Torrent PGM, Affymetrix SNP Array 6.0.

	data_details[].program_name

	string

	The program for which the data was generated, e.g. ‘CCLE’, ‘TARGET’,’TCGA’.

	data_details[].project_short_name

	string

	The id of the project, e.g. ‘CCLE-ACC’, ‘CCLE-UVM’, ‘TARGET-ALL-P1’, ‘ TARGET-WT’, ‘TCGA-ACC’, ‘TCGA-UVM’

	data_details[].sample_barcode

	string

	Sample barcode.

	data_details[].sample_gdc_id

	string

	The GDC assigned id for the sample

	data_details[].sample_type

	string

	The sample type, e.g. ‘01’, ‘10’, ‘11’

	data_details_count

	integer

	Number of files associated with the sample barcode.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

users().get()

Returns the dbGaP authorization status of the user.

Example:

python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/users

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.users.get?/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
data = service.users().get().execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/users

Parameters

None

Response

If successful, this method returns a response body with the following structure:

{
 "dbGaP_authorized": boolean,
 "message": string
}

	Parameter name

	Value

	Description

	dbGaP_authorized

	boolean

	True or false.

	message

	string

	Message indicating the authorization status of the user.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

aliquots().annotations()

Returns TCGA annotations about a specific aliquot, Takes an aliquot barcode (of length 28, eg TCGA-01-0628-11A-01D-0356-01) as a required parameter. User does not need to be authenticated.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/aliquots/TCGA-01-0628-11A-01D-0358-06/annotations

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https://api-dot-isb-cgc.appspot.com/_ah/api#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.aliquots.annotations?aliquot_barcode=TCGA-01-0628-11A-01D-0358-06&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.aliquots().annotations(aliquot_barcode='TCGA-01-0628-11A-01D-0358-06').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/aliquots/{aliquot_barcode}/annotations

Parameters

	Parameter name

	Value

	Description

	aliquot_barcode

	string

	Required.

	entity_type

	string

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "count": integer,
 "items": [
 {
 "aliquot_barcode": string,
 "annotation_gdc_id": string,
 "annotation_submitter_id": string,
 "case_barcode": string,
 "case_gdc_id": string,
 "category": string,
 "classification": string,
 "endpoint_type": string,
 "entity_barcode": string,
 "entity_gdc_id": string,
 "entity_type": string,
 "notes": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "status": string
 }
]
}

	Parameter name

	Value

	Description

	count

	integer

	Number of annotations returned.

	items[]

	list

	List of annotation items.

	items[].aliquot_barcode

	string

	Aliquot barcode.

	items[].annotation_gdc_id

	string

	Id assigned by the GDC to the annotation

	items[].annotation_submitter_id

	string

	Id assigned to the annotation by the TCGA

	items[].case_barcode

	string

	Case barcode.

	items[].case_gdc_id

	string

	Id assigned by the GDC to the case

	items[].category

	string

	Annotation category name, e.g. ‘Acceptable treatment for TCGA tumor’.

	items[].classification

	string

	Annotation classification, .e.g ‘CenterNotification’, ‘Notification’, ‘Observation’, or ‘Redaction’.

	items[].endpoint_type

	string

	Which type of GDC Annotation API was used, either legacy or current

	items[].entity_barcode

	string

	The TCGA barcode that the annottion is associated with

	items[].entity_gdc_id

	string

	Id assigned by the GDC to the entity

	items[].entity_type

	string

	Entity type, e.g. ‘Case’, ‘Aliquot’, ‘Analyte’, ‘Portion’‘, ‘Slide’, or ‘Sample’.

	items[].notes

	string

	Notes on the annotation

	items[].program_name

	string

	The program name, e.g. ‘TCGA’ (the only program with annotations)

	items[].project_short_name

	string

	The project id, e.g. ‘TCGA-BRCA’, ‘TCGA-OV’.

	items[].sample_barcode

	string

	Sample barcode.

	items[].status

	string

	Status of the annotation, e.g. ‘Approved’, ‘Rescinded’

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cases().annotations()

Returns TCGA annotations about a specific sample, Takes a case barcode (of length 12, eg TCGA-01-0628) as a required parameter. User does not need to be authenticated.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cases/TCGA-01-0628/annotations

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https://api-dot-isb-cgc.appspot.com/_ah/api#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.cases.annotations?case_barcode=TCGA-01-0628&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.cases().annotations(sample_barcode='TCGA-01-0628').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cases/{case_barcode}/annotations

Parameters

	Parameter name

	Value

	Description

	case_barcode

	string

	Required.

	entity_type

	string

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "count": integer,
 "items": [
 {
 "aliquot_barcode": string,
 "annotation_gdc_id": string,
 "annotation_submitter_id": string,
 "case_barcode": string,
 "case_gdc_id": string,
 "category": string,
 "classification": string,
 "endpoint_type": string,
 "entity_barcode": string,
 "entity_gdc_id": string,
 "entity_type": string,
 "notes": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "status": string
 }
]
}

	Parameter name

	Value

	Description

	count

	integer

	Number of annotations returned.

	items[]

	list

	List of annotation items.

	items[].aliquot_barcode

	string

	Aliquot barcode.

	items[].annotation_gdc_id

	string

	Id assigned by the GDC to the annotation

	items[].annotation_submitter_id

	string

	Id assigned to the annotation by the TCGA

	items[].case_barcode

	string

	Case barcode.

	items[].case_gdc_id

	string

	Id assigned by the GDC to the case

	items[].category

	string

	Annotation category name, e.g. ‘Acceptable treatment for TCGA tumor’.

	items[].classification

	string

	Annotation classification, .e.g ‘CenterNotification’, ‘Notification’, ‘Observation’, or ‘Redaction’.

	items[].endpoint_type

	string

	Which type of GDC Annotation API was used, either legacy or current

	items[].entity_barcode

	string

	The TCGA barcode that the annottion is associated with

	items[].entity_gdc_id

	string

	Id assigned by the GDC to the entity

	items[].entity_type

	string

	Entity type, e.g. ‘Case’, ‘Aliquot’, ‘Analyte’, ‘Portion’‘, ‘Slide’, or ‘Sample’.

	items[].notes

	string

	Notes on the annotation

	items[].program_name

	string

	The program name, e.g. ‘TCGA’ (the only program with annotations)

	items[].project_short_name

	string

	The project id, e.g. ‘TCGA-BRCA’, ‘TCGA-OV’.

	items[].sample_barcode

	string

	Sample barcode.

	items[].status

	string

	Status of the annotation, e.g. ‘Approved’, ‘Rescinded’

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

samples().annotations()

Returns TCGA annotations about a specific sample, Takes a sample barcode (of length 16, eg TCGA-01-0628-11A) as a required parameter. User does not need to be authenticated.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/TCGA-01-0628-11A/annotations

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https://api-dot-isb-cgc.appspot.com/_ah/api#p/isb_cgc_tcga_api/v3/isb_cgc_tcga_api.samples.annotations?sample_barcode=TCGA-01-0628-11A&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_tcga_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().annotations(sample_barcode='TCGA-01-0628-11A').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/samples/{sample_barcode}/annotations

Parameters

	Parameter name

	Value

	Description

	entity_type

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "count": integer,
 "items": [
 {
 "aliquot_barcode": string,
 "annotation_gdc_id": string,
 "annotation_submitter_id": string,
 "case_barcode": string,
 "case_gdc_id": string,
 "category": string,
 "classification": string,
 "endpoint_type": string,
 "entity_barcode": string,
 "entity_gdc_id": string,
 "entity_type": string,
 "notes": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "status": string
 }
]
}

	Parameter name

	Value

	Description

	count

	integer

	Number of annotations returned.

	items[]

	list

	List of annotation items.

	items[].aliquot_barcode

	string

	Aliquot barcode.

	items[].annotation_gdc_id

	string

	Id assigned by the GDC to the annotation

	items[].annotation_submitter_id

	string

	Id assigned to the annotation by the TCGA

	items[].case_barcode

	string

	Case barcode.

	items[].case_gdc_id

	string

	Id assigned by the GDC to the case

	items[].category

	string

	Annotation category name, e.g. ‘Acceptable treatment for TCGA tumor’.

	items[].classification

	string

	Annotation classification, .e.g ‘CenterNotification’, ‘Notification’, ‘Observation’, or ‘Redaction’.

	items[].endpoint_type

	string

	Which type of GDC Annotation API was used, either legacy or current

	items[].entity_barcode

	string

	The TCGA barcode that the annottion is associated with

	items[].entity_gdc_id

	string

	Id assigned by the GDC to the entity

	items[].entity_type

	string

	Entity type, e.g. ‘Case’, ‘Aliquot’, ‘Analyte’, ‘Portion’‘, ‘Slide’, or ‘Sample’.

	items[].notes

	string

	Notes on the annotation

	items[].program_name

	string

	The program name, e.g. ‘TCGA’ (the only program with annotations)

	items[].project_short_name

	string

	The project id, e.g. ‘TCGA-BRCA’, ‘TCGA-OV’.

	items[].sample_barcode

	string

	Sample barcode.

	items[].status

	string

	Status of the annotation, e.g. ‘Approved’, ‘Rescinded’

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().preview()

Takes a JSON object of filters in the request body and returns a “preview” of the cohort that would result from passing a similar request to the cohort save endpoint. This preview consists of two lists: the lists of case barcodes, and the list of sample barcodes. Authentication is not required.

Example:

curl "https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/cohorts/preview?program_short_name=TARGET-ALL-P2&program_short_name=TARGET-RT&age_at_diagnosis_lte=20"

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_target_api/v3/isb_cgc_target_api.cohorts.preview?resource=%257B%250A++%2522program_short_name%2522%253A+%250A++%255B%2522TARGET-ALL-P2%2522%252C%2522TARGET-RT%2522%250A++%255D%252C%250A++%2522age_at_diagnosis_lte%2522%253A+%252230%2522%250A%257D&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_target_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
body = {'program_short_name': ['TARGET-ALL-P2', 'TARGET-RT'], 'age_at_diagnosis_gte': 90}
data = service.cohorts().preview(**body).execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/cohorts/preview

Parameters

	Parameter name

	Value

	Description

	age_at_diagnosis

	integer

	Optional.

	age_at_diagnosis_gte

	integer

	Optional.

	age_at_diagnosis_lte

	integer

	Optional.

	case_barcode

	string

	Optional.

	case_gdc_id

	string

	Optional.

	days_to_birth

	integer

	Optional.

	days_to_birth_gte

	integer

	Optional.

	days_to_birth_lte

	integer

	Optional.

	days_to_death

	integer

	Optional.

	days_to_death_gte

	integer

	Optional.

	days_to_death_lte

	integer

	Optional.

	days_to_last_followup

	integer

	Optional.

	days_to_last_followup_gte

	integer

	Optional.

	days_to_last_followup_lte

	integer

	Optional.

	days_to_last_known_alive

	integer

	Optional.

	days_to_last_known_alive_gte

	integer

	Optional.

	days_to_last_known_alive_lte

	integer

	Optional.

	disease_code

	string

	Optional.

	endpoint_type

	string

	Optional.

	ethnicity

	string

	Optional.

	event_free_survival

	integer

	Optional.

	event_free_survival_gte

	integer

	Optional.

	event_free_survival_lte

	integer

	Optional.

	first_event

	string

	Optional.

	gender

	string

	Optional.

	program_name

	string

	Optional.

	project_short_name

	string

	Optional.

	protocol

	string

	Optional.

	race

	string

	Optional.

	sample_barcode

	string

	Optional.

	sample_gdc_id

	string

	Optional.

	sample_type

	string

	Optional.

	summary_file_count

	integer

	Optional.

	summary_file_count_gte

	integer

	Optional.

	summary_file_count_lte

	integer

	Optional.

	tumor_code

	string

	Optional.

	vital_status

	string

	Optional.

	wbc_at_diagnosis

	number

	Optional.

	wbc_at_diagnosis_gte

	number

	Optional.

	wbc_at_diagnosis_lte

	number

	Optional.

	year_of_diagnosis

	integer

	Optional.

	year_of_diagnosis_gte

	integer

	Optional.

	year_of_diagnosis_lte

	integer

	Optional.

	year_of_last_follow_up

	integer

	Optional.

	year_of_last_follow_up_gte

	integer

	Optional.

	year_of_last_follow_up_lte

	integer

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "case_count": integer,
 "cases": [string],
 "sample_count": integer,
 "samples": [string]
}

	Parameter name

	Value

	Description

	case_count

	integer

	Number of cases in the cohort.

	cases[]

	list

	List of cases barcodes in the cohort.

	sample_count

	integer

	Number of samples in the cohort.

	samples[]

	list

	List of sample barcodes in the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().create()

Creates and saves a cohort. Takes a JSON object in the request body to use as the cohort’s filters. Authentication is required. Returns information about the saved cohort, including the number of cases and the number of samples in that cohort.

Example:

python isb_curl.py "https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/cohorts/create?name={COHORT NAME}" -H "Content-Type: application/json" -d '{"program_short_name": ["TARGET-ALL-P2", "TARGET-RT"], "age_at_diagnosis_lte": 60}'

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_target_api/v3/isb_cgc_target_api.cohorts.create?name=COHORT%20NAME%20HERE&resource=%257B%250A++%2522Study%2522%253A+%250A++%255B%2522UCS%2522%250A++%255D%250A%257D&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_target_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
body = {'program_short_name': ['TARGET-ALL-P2', 'TARGET-RT'], 'age_at_diagnosis_gte': 90}
data = service.cohorts().create(name=name, body=body).execute()

Request

HTTP request:

POST https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/cohorts/create

Parameters

	Parameter name

	Value

	Description

	name

	string

	Required.

Request body

In the request body, supply a metadata resource with the following properties:

{
 "age_at_diagnosis": [integer],
 "age_at_diagnosis_gte": integer,
 "age_at_diagnosis_lte": integer,
 "case_barcode": [string],
 "case_gdc_id": [string],
 "days_to_birth": [integer],
 "days_to_birth_gte": integer,
 "days_to_birth_lte": integer,
 "days_to_death": [integer],
 "days_to_death_gte": integer,
 "days_to_death_lte": integer,
 "days_to_last_followup": [integer],
 "days_to_last_followup_gte": integer,
 "days_to_last_followup_lte": integer,
 "days_to_last_known_alive": [integer],
 "days_to_last_known_alive_gte": integer,
 "days_to_last_known_alive_lte": integer,
 "disease_code": [string],
 "endpoint_type": [string],
 "ethnicity": [string],
 "event_free_survival": [integer],
 "event_free_survival_gte": integer,
 "event_free_survival_lte": integer,
 "first_event": [string],
 "gender": [string],
 "program_name": [string],
 "project_short_name": [string],
 "protocol": [string],
 "race": [string],
 "sample_barcode": [string],
 "sample_gdc_id": [string],
 "sample_type": [string],
 "summary_file_count": [integer],
 "summary_file_count_gte": integer,
 "summary_file_count_lte": integer,
 "tumor_code": [string],
 "vital_status": [string],
 "wbc_at_diagnosis": [number],
 "wbc_at_diagnosis_gte": number,
 "wbc_at_diagnosis_lte": number,
 "year_of_diagnosis": [integer],
 "year_of_diagnosis_gte": integer,
 "year_of_diagnosis_lte": integer,
 "year_of_last_follow_up": [integer],
 "year_of_last_follow_up_gte": integer,
 "year_of_last_follow_up_lte": integer
}

	Parameter name

	Value

	Description

	age_at_diagnosis[]

	list

	Optional.

	age_at_diagnosis_gte

	integer

	Optional.

	age_at_diagnosis_lte

	integer

	Optional.

	case_barcode[]

	list

	Optional.

	case_gdc_id[]

	list

	Optional.

	days_to_birth[]

	list

	Optional.

	days_to_birth_gte

	integer

	Optional.

	days_to_birth_lte

	integer

	Optional.

	days_to_death[]

	list

	Optional.

	days_to_death_gte

	integer

	Optional.

	days_to_death_lte

	integer

	Optional.

	days_to_last_followup[]

	list

	Optional.

	days_to_last_followup_gte

	integer

	Optional.

	days_to_last_followup_lte

	integer

	Optional.

	days_to_last_known_alive[]

	list

	Optional.

	days_to_last_known_alive_gte

	integer

	Optional.

	days_to_last_known_alive_lte

	integer

	Optional.

	disease_code[]

	list

	Optional. Possible values include: ‘ALL’, ‘AML’, ‘CCSK’, ‘NBL’, ‘OS’, ‘RT’, ‘WT’.

	endpoint_type[]

	list

	Optional. Possible values include: ‘current’, ‘legacy’.

	ethnicity[]

	list

	Optional. Possible values include: ‘Hispanic or Latino’, ‘Not Hispanic or Latino’.

	event_free_survival[]

	list

	Optional.

	event_free_survival_gte

	integer

	Optional.

	event_free_survival_lte

	integer

	Optional.

	first_event[]

	list

	Optional. Possible values include: ‘Censored’, ‘Death’, ‘Death without remission’, ‘Event’, ‘Induction failure’, ‘Progression’, ‘Relapse’, ‘Second Malignant Neoplasm’.

	gender[]

	list

	Optional. Possible values include: ‘Female’, ‘Male’.

	program_name[]

	list

	Optional. Possible values include: ‘TARGET’.

	project_short_name[]

	list

	Optional. Possible values include: ‘TARGET-ALL-P1’, ‘TARGET-ALL-P2’, ‘TARGET-AML’, ‘TARGET-CCSK’, ‘TARGET-NBL’, ‘TARGET-OS’, ‘TARGET-RT’, ‘TARGET-WT’.

	protocol[]

	list

	Optional.

	race[]

	list

	Optional. Possible values include: ‘American Indian or Alaska Native’, ‘Asian’, ‘Black or African American’, ‘Native Hawaiian or other Pacific Islander’, ‘Other’, ‘White’.

	sample_barcode[]

	list

	Optional.

	sample_gdc_id[]

	list

	Optional.

	sample_type[]

	list

	Optional. Possible values include: ‘01’, ‘02’, ‘03’, ‘04’, ‘06’, ‘08’, ‘09’, ‘10’, ‘11’, ‘13’, ‘14’, ‘15’, ‘20’, ‘40’, ‘41’, ‘42’, ‘50’, ‘60’.

	summary_file_count[]

	list

	Optional.

	summary_file_count_gte

	integer

	Optional.

	summary_file_count_lte

	integer

	Optional.

	tumor_code[]

	list

	Optional. Possible values include: ‘00’, ‘10’, ‘20’, ‘21’, ‘30’, ‘40’, ‘50’, ‘51’, ‘52’.

	vital_status[]

	list

	Optional. Possible values include: ‘alive’, ‘dead’.

	wbc_at_diagnosis[]

	list

	Optional.

	wbc_at_diagnosis_gte

	number

	Optional.

	wbc_at_diagnosis_lte

	number

	Optional.

	year_of_diagnosis[]

	list

	Optional.

	year_of_diagnosis_gte

	integer

	Optional.

	year_of_diagnosis_lte

	integer

	Optional.

	year_of_last_follow_up[]

	list

	Optional.

	year_of_last_follow_up_gte

	integer

	Optional.

	year_of_last_follow_up_lte

	integer

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "case_count": integer,
 "filters": [
 {
 "name": string,
 "value": string
 }
],
 "id": string,
 "last_date_saved": string,
 "name": string,
 "sample_count": integer
}

	Parameter name

	Value

	Description

	case_count

	integer

	Number of unique case barcodes in the cohort.

	filters[]

	list

	List of filters applied to create cohort, if any.

	filters[].name

	string

	Names of filtering parameters used to create the cohort.

	filters[].value

	string

	Values of filtering parameters used to create the cohort.

	id

	string

	Cohort id.

	last_date_saved

	string

	Last date the cohort was saved.

	name

	string

	Name of cohort.

	sample_count

	integer

	Number of unique sample barcodes in the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cases().get()

Returns information about a specific case, including a list of samples and aliquots derived from this case. Takes a case barcode (of length 16, eg TARGET-51-PALFYG) as a required parameter. User does not need to be authenticated.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/cases/TARGET-10-DCC001

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_target_api/v3/isb_cgc_target_api.cases.get?case_barcode=TARGET-10-DCC001&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_target_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.cases().get(case_barcode='TARGET-10-DCC001').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/cases/{case_barcode}

Parameters

	Parameter name

	Value

	Description

	case_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "clinical_data": {
 "age_at_diagnosis": integer,
 "case_barcode": string,
 "case_gdc_id": string,
 "days_to_birth": integer,
 "days_to_death": integer,
 "days_to_last_followup": integer,
 "days_to_last_known_alive": integer,
 "disease_code": string,
 "endpoint_type": string,
 "ethnicity": string,
 "event_free_survival": integer,
 "first_event": string,
 "gender": string,
 "program_name": string,
 "project_short_name": string,
 "protocol": string,
 "race": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string,
 "summary_file_count": integer,
 "tumor_code": string,
 "vital_status": string,
 "wbc_at_diagnosis": number,
 "year_of_diagnosis": integer,
 "year_of_last_follow_up": integer
 },
 "samples": [string]
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this patient.

	clinical_data

	nested object

	The clinical data about the patient.

	clinical_data.age_at_diagnosis

	integer

	Age at which a condition or disease was first diagnosed in years.

	clinical_data.case_barcode

	string

	Case barcode.

	clinical_data.case_gdc_id

	string

	The GDC assigned id for the case

	clinical_data.days_to_birth

	integer

	Time interval from a person’s date of birth to the date of initial pathologic diagnosis, represented as a calculated number of days.

	clinical_data.days_to_death

	integer

	Time interval from a person’s date of death to the date of initial pathologic diagnosis, represented as a calculated number of days.

	clinical_data.days_to_last_followup

	integer

	Time interval from the date of last followup to the date of initial pathologic diagnosis, represented as a calculated number of days.

	clinical_data.days_to_last_known_alive

	integer

	The number of days between diagnosis and when the individual was last known to be alive.

	clinical_data.disease_code

	string

	The short name for the type of disease

	clinical_data.endpoint_type

	string

	Which type of GDC Case API was used, either legacy or current

	clinical_data.ethnicity

	string

	The text for reporting information about ethnicity based on the Office of Management and Budget (OMB) categories.

	clinical_data.event_free_survival

	integer

	The length of time after primary treatment for a cancer ends that the patient remains free of certain complications or events.

	clinical_data.first_event

	string

	The first event after the diagnosis of cancer.

	clinical_data.gender

	string

	Text designations that identify gender.

	clinical_data.program_name

	string

	Project name, e.g. ‘TCGA’.

	clinical_data.project_short_name

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	clinical_data.protocol

	string

	A list detailed plans of scientific or medical experiments, treatments, or procedures.

	clinical_data.race

	string

	The text for reporting information about race based on the Office of Management and Budget (OMB) categories.

	clinical_data.sample_barcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	clinical_data.sample_gdc_id

	string

	The GDC assigned id for the sample

	clinical_data.sample_type

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	clinical_data.summary_file_count

	integer

	The count of files associated with the sample

	clinical_data.tumor_code

	string

	Code representing the type of tumor.

	clinical_data.vital_status

	string

	The survival state of the person registered on the protocol.

	clinical_data.wbc_at_diagnosis

	number

	White blood cell range at diagnosis

	clinical_data.year_of_diagnosis

	integer

	Numeric value to represent the year of an individual’s initial pathologic diagnosis of cancer.

	clinical_data.year_of_last_follow_up

	integer

	Numeric value to represent the year of an individual’s last follow up.

	samples[]

	list

	List of barcodes of samples taken from this patient.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

samples().cloud_storage_file_paths()

Takes a sample barcode as a required parameter and returns cloud storage paths to files associated with that sample.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/samples/TARGET-10-DCC001-03A/cloud_storage_file_paths

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_target_api/v3/isb_cgc_target_api.samples.cloud_storage_file_paths?sample_barcode=TARGET-10-DCC001-03A&platform=Genome_Wide_SNP_6&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_target_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().cloud_storage_file_paths(sample_barcode='TARGET-10-DCC001-03A').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/samples/{sample_barcode}/cloud_storage_file_paths

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	genomic_build

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "cloud_storage_file_paths": [string],
 "count": integer
}

	Parameter name

	Value

	Description

	cloud_storage_file_paths[]

	list

	List of Google Cloud Storage paths of files associated with the cohort.

	count

	integer

	Number of Google Cloud Storage paths returned for the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

samples().get()

Given a sample barcode (of length 20-22, eg TARGET-51-PALFYG-01A), this endpoint returns all available “biospecimen” information about this sample, the associated case barcode, a list of associated aliquots, and a list of “data_details” blocks describing each of the data files associated with this sample

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/samples/TARGET-10-DCC001-03A

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_target_api/v3/isb_cgc_target_api.samples.get?sample_barcode=TARGET-10-DCC001-03A&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_target_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().get(sample_barcode='TARGET-10-DCC001-03A').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/samples/{sample_barcode}

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	endpoint_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "biospecimen_data": {
 "age_at_diagnosis": integer,
 "case_barcode": string,
 "case_gdc_id": string,
 "days_to_birth": integer,
 "days_to_death": integer,
 "days_to_last_followup": integer,
 "days_to_last_known_alive": integer,
 "disease_code": string,
 "endpoint_type": string,
 "ethnicity": string,
 "event_free_survival": integer,
 "first_event": string,
 "gender": string,
 "program_name": string,
 "project_short_name": string,
 "protocol": string,
 "race": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string,
 "summary_file_count": integer,
 "tumor_code": string,
 "vital_status": string,
 "wbc_at_diagnosis": number,
 "year_of_diagnosis": integer,
 "year_of_last_follow_up": integer
 },
 "case": string,
 "data_details": [
 {
 "access": string,
 "analysis_workflow_type": string,
 "data_category": string,
 "data_format": string,
 "data_type": string,
 "disease_code": string,
 "endpoint_type": string,
 "experimental_strategy": string,
 "file_gdc_id": string,
 "file_name": string,
 "file_name_key": string,
 "file_size": string,
 "index_file_name": string,
 "platform": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string
 }
],
 "data_details_count": integer
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this participant.

	biospecimen_data

	nested object

	Biospecimen data about the sample.

	biospecimen_data.age_at_diagnosis

	integer

	Age at which a condition or disease was first diagnosed in years.

	biospecimen_data.case_barcode

	string

	Case barcode.

	biospecimen_data.case_gdc_id

	string

	The GDC assigned id for the case

	biospecimen_data.days_to_birth

	integer

	Time interval from a person’s date of birth to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_death

	integer

	Time interval from a person’s date of death to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_last_followup

	integer

	Time interval from the date of last followup to the date of initial pathologic diagnosis, represented as a calculated number of days.

	biospecimen_data.days_to_last_known_alive

	integer

	The number of days between diagnosis and when the individual was last known to be alive.

	biospecimen_data.disease_code

	string

	The short name for the type of disease

	biospecimen_data.endpoint_type

	string

	Which type of GDC Case API was used, either legacy or current

	biospecimen_data.ethnicity

	string

	The text for reporting information about ethnicity based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.event_free_survival

	integer

	The length of time after primary treatment for a cancer ends that the patient remains free of certain complications or events.

	biospecimen_data.first_event

	string

	The first event after the diagnosis of cancer.

	biospecimen_data.gender

	string

	Text designations that identify gender.

	biospecimen_data.program_name

	string

	Project name, e.g. ‘TCGA’.

	biospecimen_data.project_short_name

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	biospecimen_data.protocol

	string

	A list detailed plans of scientific or medical experiments, treatments, or procedures.

	biospecimen_data.race

	string

	The text for reporting information about race based on the Office of Management and Budget (OMB) categories.

	biospecimen_data.sample_barcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	biospecimen_data.sample_gdc_id

	string

	The GDC assigned id for the sample

	biospecimen_data.sample_type

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	biospecimen_data.summary_file_count

	integer

	The count of files associated with the sample

	biospecimen_data.tumor_code

	string

	Code representing the type of tumor.

	biospecimen_data.vital_status

	string

	The survival state of the person registered on the protocol.

	biospecimen_data.wbc_at_diagnosis

	number

	White blood cell range at diagnosis

	biospecimen_data.year_of_diagnosis

	integer

	Numeric value to represent the year of an individual’s initial pathologic diagnosis of cancer.

	biospecimen_data.year_of_last_follow_up

	integer

	Numeric value to represent the year of an individual’s last follow up.

	case

	string

	Case barcode.

	data_details[]

	list

	List of information about each file associated with the sample barcode.

	data_details[].access

	string

	An indication of the security protocol necessary to fulfill in order to access the data from the file, e.g. open, controlled.

	data_details[].analysis_workflow_type

	string

	The type of workflow used to generate the data file, e.g. ‘BWA-aln’, ‘STAR 2-Pass’, ‘BWA with Mark Duplicates and Cocleaning’

	data_details[].data_category

	string

	The higher level categorization of the data_type in the file, e.g. ‘Biospecimen’, ‘Clinical’, ‘Raw sequencing data’, ‘Simple nucleotide variation’

	data_details[].data_format

	string

	The format of the data file, e.g. ‘BAM’, ‘BCR XML’, ‘TXT’

	data_details[].data_type

	string

	Data type stored in Google Cloud Storage, e.g. ‘Clinical Supplement’, ‘Biospecimen Supplement’, ‘Aligned reads’, ‘Genotypes’, ‘Diagnostic image’

	data_details[].disease_code

	string

	The disease abbeviation, e.g. ‘ACC’, ‘UVM’, ‘ALL’, ‘WT’

	data_details[].endpoint_type

	string

	The GDC files API the data file information was gottern from, e.g. ‘legacy’, ‘current’

	data_details[].experimental_strategy

	string

	The sequencing, array or other strategy used to generate the data file, e.g. ‘RNA-Seq’, ‘WGS’, ‘Genotyping array’

	data_details[].file_gdc_id

	string

	The GDC assigned id for the file

	data_details[].file_name

	string

	Name of the datafile stored on the GDC system.

	data_details[].file_name_key

	string

	Google Cloud Storage path to file.

	data_details[].file_size

	string

	The size of the file

	data_details[].index_file_name

	string

	For BAM files, the name of its index file

	data_details[].platform

	string

	The sequencing or array platform used, e.g. Illumina HiSeq, Ion Torrent PGM, Affymetrix SNP Array 6.0.

	data_details[].program_name

	string

	The program for which the data was generated, e.g. ‘CCLE’, ‘TARGET’,’TCGA’.

	data_details[].project_short_name

	string

	The id of the project, e.g. ‘CCLE-ACC’, ‘CCLE-UVM’, ‘TARGET-ALL-P1’, ‘ TARGET-WT’, ‘TCGA-ACC’, ‘TCGA-UVM’

	data_details[].sample_barcode

	string

	Sample barcode.

	data_details[].sample_gdc_id

	string

	The GDC assigned id for the sample

	data_details[].sample_type

	string

	The sample type, e.g. ‘01’, ‘10’, ‘11’

	data_details_count

	integer

	Number of files associated with the sample barcode.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

users().get()

Returns the dbGaP authorization status of the user.

Example:

python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/users

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_target_api/v3/isb_cgc_target_api.users.get?/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_target_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
data = service.users().get().execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_target_api/v3/users

Parameters

None

Response

If successful, this method returns a response body with the following structure:

{
 "dbGaP_authorized": boolean,
 "message": string
}

	Parameter name

	Value

	Description

	dbGaP_authorized

	boolean

	True or false.

	message

	string

	Message indicating the authorization status of the user.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().preview()

Takes a JSON object of filters in the request body and returns a “preview” of the cohort that would result from passing a similar request to the cohort save endpoint. This preview consists of two lists: the lists of case barcodes, and the list of sample barcodes. Authentication is not required.

Example:

curl "https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cohorts/preview?program_short_name=CCLE-BLCA&program_short_name=CCLE-LUSC&gender=Male"

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_ccle_api/v3/isb_cgc_ccle_api.cohorts.preview?resource=%257B%250A++%2522program_short_name%2522%253A+%250A++%255B%2522CCLE-BLCA%2522%252C%2522CCLE-LUSC%2522%250A++%255D%252C%250A++%2522age_at_initial_pathologic_diagnosis_lte%2522%253A+%252230%2522%250A%257D&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_ccle_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
body = {'program_short_name': ['CCLE-BLCA', 'CCLE-LUSC'], 'gender': Male}
data = service.cohorts().preview(**body).execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cohorts/preview

Parameters

	Parameter name

	Value

	Description

	case_barcode

	string

	Optional.

	case_gdc_id

	string

	Optional.

	disease_code

	string

	Optional.

	endpoint_type

	string

	Optional.

	gender

	string

	Optional.

	hist_subtype

	string

	Optional.

	histology

	string

	Optional.

	program_name

	string

	Optional.

	project_short_name

	string

	Optional.

	sample_barcode

	string

	Optional.

	sample_gdc_id

	string

	Optional.

	sample_type

	string

	Optional.

	site_primary

	string

	Optional.

	source

	string

	Optional.

	summary_file_count

	integer

	Optional.

	summary_file_count_gte

	integer

	Optional.

	summary_file_count_lte

	integer

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "case_count": integer,
 "cases": [string],
 "sample_count": integer,
 "samples": [string]
}

	Parameter name

	Value

	Description

	case_count

	integer

	Number of cases in the cohort.

	cases[]

	list

	List of cases barcodes in the cohort.

	sample_count

	integer

	Number of samples in the cohort.

	samples[]

	list

	List of sample barcodes in the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cohorts().create()

Creates and saves a cohort. Takes a JSON object in the request body to use as the cohort’s filters. Authentication is required. Returns information about the saved cohort, including the number of cases and the number of samples in that cohort.

Example:

python isb_curl.py "https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cohorts/create?name={COHORT NAME}" -H "Content-Type: application/json" -d '{"program_short_name": ["CCLE-BLCA", "CCLE-LUSC"], "gender": "Male"}'

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_ccle_api/v3/isb_cgc_ccle_api.cohorts.create?name=COHORT%20NAME%20HERE&resource=%257B%250A++%2522Study%2522%253A+%250A++%255B%2522UCS%2522%250A++%255D%250A%257D&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_ccle_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
body = {'program_short_name': ['CCLE-BLCA', 'CCLE-LUSC'], 'gender': 'Male'}
data = service.cohorts().create(name=name, body=body).execute()

Request

HTTP request:

POST https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cohorts/create

Parameters

	Parameter name

	Value

	Description

	name

	string

	Required.

Request body

In the request body, supply a metadata resource with the following properties:

{
 "case_barcode": [string],
 "case_gdc_id": [string],
 "disease_code": [string],
 "endpoint_type": [string],
 "gender": [string],
 "hist_subtype": [string],
 "histology": [string],
 "program_name": [string],
 "project_short_name": [string],
 "sample_barcode": [string],
 "sample_gdc_id": [string],
 "sample_type": [string],
 "site_primary": [string],
 "source": [string],
 "summary_file_count": [integer],
 "summary_file_count_gte": integer,
 "summary_file_count_lte": integer
}

	Parameter name

	Value

	Description

	case_barcode[]

	list

	Optional.

	case_gdc_id[]

	list

	Optional.

	disease_code[]

	list

	Optional. Possible values include: ‘BLCA’, ‘BRCA’, ‘CESC’, ‘COAD’, ‘DLBC’, ‘ESCA’, ‘HNSC’, ‘KIRC’, ‘LCLL’, ‘LGG’, ‘LIHC’, ‘LUSC’, ‘MESO’, ‘MM’, ‘OV’, ‘PAAD’, ‘PRAD’, ‘SARC’, ‘SKCM’, ‘STAD’, ‘THCA’, ‘UCEC’.

	endpoint_type[]

	list

	Optional. Possible values include: ‘legacy’.

	gender[]

	list

	Optional. Possible values include: ‘F’, ‘M’, ‘U’.

	hist_subtype[]

	list

	Optional. Possible values include: ‘acute_lymphoblastic_B_cell_leukaemia’, ‘acute_lymphoblastic_T_cell_leukaemia’, ‘acute_myeloid_leukaemia’, ‘adenocarcinoma’, ‘adult_T_cell_lymphoma-leukaemia’, ‘alveolar’, ‘anaplastic_carcinoma’, ‘anaplastic_large_cell_lymphoma’, ‘astrocytoma’, ‘astrocytoma_Grade_III’, ‘astrocytoma_Grade_IV’, ‘blast_phase_chronic_myeloid_leukaemia’, ‘Brenner_tumour’, ‘bronchioloalveolar_adenocarcinoma’, ‘Burkitt_lymphoma’, ‘B_cell_lymphoma_unspecified’, ‘carcinosarcoma-malignant_mesodermal_mixed_tumour’, ‘chronic_lymphocytic_leukaemia-small_lymphocytic_lymphoma’, ‘chronic_myeloid_leukaemia’, ‘clear_cell_carcinoma’, ‘clear_cell_renal_cell_carcinoma’, ‘dedifferentiated’, ‘diffuse_adenocarcinoma’, ‘diffuse_large_B_cell_lymphoma’, ‘ductal_carcinoma’, ‘embryonal’, ‘endometrioid_carcinoma’, ‘essential_thrombocythaemia’, ‘follicular_carcinoma’, ‘giant_cell_tumour’, ‘gliosarcoma’, ‘granulosa_cell_tumour’, ‘hepatoblastoma’, ‘hepatocellular_carcinoma’, ‘Hodgkin_lymphoma’, ‘intestinal_adenocarcinoma’, ‘large_cell_carcinoma’, ‘mantle_cell_lymphoma’, ‘medullary_carcinoma’, ‘metaplasia’, ‘metaplastic_carcinoma’, ‘mixed_adenosquamous_carcinoma’, ‘mixed_carcinoma’, ‘mucinous_carcinoma’, ‘mucoepidermoid_carcinoma’, ‘mycosis_fungoides-Sezary_syndrome’, ‘non_small_cell_carcinoma’, ‘NS’, ‘oligodendroglioma’, ‘papillary_carcinoma’, ‘papilloma’, ‘peripheral_T_cell_lymphoma_unspecified’, ‘plasma_cell_myeloma’, ‘renal_cell_carcinoma’, ‘serous_carcinoma’, ‘signet_ring_adenocarcinoma’, ‘small_cell_adenocarcinoma’, ‘small_cell_carcinoma’, ‘squamous_cell_carcinoma’, ‘transitional_cell_carcinoma’, ‘tubular_adenocarcinoma’, ‘undifferentiated_adenocarcinoma’, ‘undifferentiated_carcinoma’.

	histology[]

	list

	Optional. Possible values include: ‘carcinoid-endocrine_tumour’, ‘carcinoma’, ‘chondrosarcoma’, ‘Ewings_sarcoma-peripheral_primitive_neuroectodermal_tumour’, ‘fibrosarcoma’, ‘giant_cell_tumour’, ‘glioma’, ‘haematopoietic_neoplasm’, ‘leiomyosarcoma’, ‘lymphoid_neoplasm’, ‘malignant_fibrous_histiocytoma-pleomorphic_sarcoma’, ‘malignant_melanoma’, ‘mesothelioma’, ‘neuroblastoma’, ‘osteosarcoma’, ‘other’, ‘primitive_neuroectodermal_tumour-medulloblastoma’, ‘rhabdoid_tumour’, ‘rhabdomyosarcoma’, ‘sarcoma’, ‘sex_cord-stromal_tumour’.

	program_name[]

	list

	Optional. Possible values include: ‘CCLE’.

	project_short_name[]

	list

	Optional. Possible values include: ‘CCLE-BLCA’, ‘CCLE-BRCA’, ‘CCLE-CESC’, ‘CCLE-COAD’, ‘CCLE-DLBC’, ‘CCLE-ESCA’, ‘CCLE-HNSC’, ‘CCLE-KIRC’, ‘CCLE-LCLL’, ‘CCLE-LGG’, ‘CCLE-LIHC’, ‘CCLE-LUSC’, ‘CCLE-MESO’, ‘CCLE-MM’, ‘CCLE-OV’, ‘CCLE-PAAD’, ‘CCLE-PRAD’, ‘CCLE-SARC’, ‘CCLE-SKCM’, ‘CCLE-STAD’, ‘CCLE-THCA’, ‘CCLE-UCEC’.

	sample_barcode[]

	list

	Optional.

	sample_gdc_id[]

	list

	Optional.

	sample_type[]

	list

	Optional. Possible values include: ‘13’, ‘50’.

	site_primary[]

	list

	Optional. Possible values include: ‘autonomic_ganglia’, ‘biliary_tract’, ‘bone’, ‘breast’, ‘central_nervous_system’, ‘endometrium’, ‘haematopoietic_and_lymphoid_tissue’, ‘kidney’, ‘large_intestine’, ‘liver’, ‘lung’, ‘oesophagus’, ‘ovary’, ‘pancreas’, ‘pleura’, ‘prostate’, ‘salivary_gland’, ‘skin’, ‘small_intestine’, ‘soft_tissue’, ‘stomach’, ‘thyroid’, ‘upper_aerodigestive_tract’, ‘urinary_tract’.

	source[]

	list

	Optional. Possible values include: ‘Academic Lab’, ‘ATCC’, ‘DSMZ’, ‘ECACC’, ‘HSRRB’, ‘ICLC’, ‘KCLB’, ‘NCI/DCTD’, ‘RIKEN’.

	summary_file_count[]

	list

	Optional.

	summary_file_count_gte

	integer

	Optional.

	summary_file_count_lte

	integer

	Optional.

Response

If successful, this method returns a response body with the following structure:

{
 "case_count": integer,
 "filters": [
 {
 "name": string,
 "value": string
 }
],
 "id": string,
 "last_date_saved": string,
 "name": string,
 "sample_count": integer
}

	Parameter name

	Value

	Description

	case_count

	integer

	Number of unique case barcodes in the cohort.

	filters[]

	list

	List of filters applied to create cohort, if any.

	filters[].name

	string

	Names of filtering parameters used to create the cohort.

	filters[].value

	string

	Values of filtering parameters used to create the cohort.

	id

	string

	Cohort id.

	last_date_saved

	string

	Last date the cohort was saved.

	name

	string

	Name of cohort.

	sample_count

	integer

	Number of unique sample barcodes in the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

cases().get()

Returns information about a specific case, including a list of samples and aliquots derived from this case. Takes a case barcode (eg ACC-MESO-1) as a required parameter. User does not need to be authenticated.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cases/1034

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_ccle_api/v3/isb_cgc_ccle_api.cases.get?case_barcode=1034&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_ccle_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.cases().get(case_barcode='1034').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/cases/{case_barcode}

Parameters

	Parameter name

	Value

	Description

	case_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "clinical_data": {
 "case_barcode": string,
 "case_gdc_id": string,
 "disease_code": string,
 "endpoint_type": string,
 "gender": string,
 "hist_subtype": string,
 "histology": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string,
 "site_primary": string,
 "source": string,
 "summary_file_count": integer
 },
 "samples": [string]
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this patient.

	clinical_data

	nested object

	The clinical data about the patient.

	clinical_data.case_barcode

	string

	Case barcode.

	clinical_data.case_gdc_id

	string

	The GDC assigned id for the case

	clinical_data.disease_code

	string

	The short name for the type of disease

	clinical_data.endpoint_type

	string

	Which type of GDC Case API was used, either legacy or current

	clinical_data.gender

	string

	Text designations that identify gender.

	clinical_data.hist_subtype

	string

	Text term for a more specific definition of the histology

	clinical_data.histology

	string

	Text term for the structural pattern of cancer cells used to define a microscopic diagnosis.

	clinical_data.program_name

	string

	Project name, e.g. ‘TCGA’.

	clinical_data.project_short_name

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	clinical_data.sample_barcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	clinical_data.sample_gdc_id

	string

	The GDC assigned id for the sample

	clinical_data.sample_type

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	clinical_data.site_primary

	string

	Text term that describes the anatomic site of the tumor or disease.

	clinical_data.source

	string

	The source institution the cell line was obtained from

	clinical_data.summary_file_count

	integer

	The count of files associated with the sample

	samples[]

	list

	List of barcodes of samples taken from this patient.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

samples().cloud_storage_file_paths()

Takes a sample barcode as a required parameter and returns cloud storage paths to files associated with that sample.

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/samples/CCLE-LS1034/cloud_storage_file_paths

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_ccle_api/v3/isb_cgc_ccle_api.samples.cloud_storage_file_paths?sample_barcode=TCGA-ZH-A8Y6-01A&platform=Genome_Wide_SNP_6&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_ccle_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().cloud_storage_file_paths(sample_barcode='CCLE-LS1034').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/samples/{sample_barcode}/cloud_storage_file_paths

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	genomic_build

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "cloud_storage_file_paths": [string],
 "count": integer
}

	Parameter name

	Value

	Description

	cloud_storage_file_paths[]

	list

	List of Google Cloud Storage paths of files associated with the cohort.

	count

	integer

	Number of Google Cloud Storage paths returned for the cohort.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

samples().get()

Given a sample barcode (eg CCLE-ACC-MESO-1), this endpoint returns all available “biospecimen” information about this sample, the associated case barcode, a list of associated aliquots, and a list of “data_details” blocks describing each of the data files associated with this sample

Example:

curl https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/samples/CCLE-LS1034

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_ccle_api/v3/isb_cgc_ccle_api.samples.get?sample_barcode=CCLE-LS1034&/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
import httplib2

def get_unauthorized_service():
 api = 'isb_cgc_ccle_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 return build(api, version, discoveryServiceUrl=discovery_url, http=httplib2.Http())

service = get_unauthorized_service()
data = service.samples().get(sample_barcode='CCLE-LS1034').execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/samples/{sample_barcode}

Parameters

	Parameter name

	Value

	Description

	analysis_workflow_type

	string

	Optional.

	data_category

	string

	Optional.

	data_format

	string

	Optional.

	data_type

	string

	Optional.

	endpoint_type

	string

	Optional.

	experimental_strategy

	string

	Optional.

	platform

	string

	Optional.

	sample_barcode

	string

	Required.

Response

If successful, this method returns a response body with the following structure:

{
 "aliquots": [string],
 "biospecimen_data": {
 "case_barcode": string,
 "case_gdc_id": string,
 "disease_code": string,
 "endpoint_type": string,
 "gender": string,
 "hist_subtype": string,
 "histology": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string,
 "site_primary": string,
 "source": string,
 "summary_file_count": integer
 },
 "case": string,
 "data_details": [
 {
 "access": string,
 "analysis_workflow_type": string,
 "data_category": string,
 "data_format": string,
 "data_type": string,
 "disease_code": string,
 "endpoint_type": string,
 "experimental_strategy": string,
 "file_gdc_id": string,
 "file_name": string,
 "file_name_key": string,
 "file_size": string,
 "index_file_name": string,
 "platform": string,
 "program_name": string,
 "project_short_name": string,
 "sample_barcode": string,
 "sample_gdc_id": string,
 "sample_type": string
 }
],
 "data_details_count": integer
}

	Parameter name

	Value

	Description

	aliquots[]

	list

	List of barcodes of aliquots taken from this participant.

	biospecimen_data

	nested object

	Biospecimen data about the sample.

	biospecimen_data.case_barcode

	string

	Case barcode.

	biospecimen_data.case_gdc_id

	string

	The GDC assigned id for the case

	biospecimen_data.disease_code

	string

	The short name for the type of disease

	biospecimen_data.endpoint_type

	string

	Which type of GDC Case API was used, either legacy or current

	biospecimen_data.gender

	string

	Text designations that identify gender.

	biospecimen_data.hist_subtype

	string

	Text term for a more specific definition of the histology

	biospecimen_data.histology

	string

	Text term for the structural pattern of cancer cells used to define a microscopic diagnosis.

	biospecimen_data.program_name

	string

	Project name, e.g. ‘TCGA’.

	biospecimen_data.project_short_name

	string

	Tumor type abbreviation, e.g. ‘BRCA’.

	biospecimen_data.sample_barcode

	string

	The barcode assigned by TCGA to a sample from a Participant.

	biospecimen_data.sample_gdc_id

	string

	The GDC assigned id for the sample

	biospecimen_data.sample_type

	string

	The type of the sample tumor or normal tissue cell or blood sample provided by a participant.

	biospecimen_data.site_primary

	string

	Text term that describes the anatomic site of the tumor or disease.

	biospecimen_data.source

	string

	The source institution the cell line was obtained from

	biospecimen_data.summary_file_count

	integer

	The count of files associated with the sample

	case

	string

	Case barcode.

	data_details[]

	list

	List of information about each file associated with the sample barcode.

	data_details[].access

	string

	An indication of the security protocol necessary to fulfill in order to access the data from the file, e.g. open, controlled.

	data_details[].analysis_workflow_type

	string

	The type of workflow used to generate the data file, e.g. ‘BWA-aln’, ‘STAR 2-Pass’, ‘BWA with Mark Duplicates and Cocleaning’

	data_details[].data_category

	string

	The higher level categorization of the data_type in the file, e.g. ‘Biospecimen’, ‘Clinical’, ‘Raw sequencing data’, ‘Simple nucleotide variation’

	data_details[].data_format

	string

	The format of the data file, e.g. ‘BAM’, ‘BCR XML’, ‘TXT’

	data_details[].data_type

	string

	Data type stored in Google Cloud Storage, e.g. ‘Clinical Supplement’, ‘Biospecimen Supplement’, ‘Aligned reads’, ‘Genotypes’, ‘Diagnostic image’

	data_details[].disease_code

	string

	The disease abbeviation, e.g. ‘ACC’, ‘UVM’, ‘ALL’, ‘WT’

	data_details[].endpoint_type

	string

	The GDC files API the data file information was gottern from, e.g. ‘legacy’, ‘current’

	data_details[].experimental_strategy

	string

	The sequencing, array or other strategy used to generate the data file, e.g. ‘RNA-Seq’, ‘WGS’, ‘Genotyping array’

	data_details[].file_gdc_id

	string

	The GDC assigned id for the file

	data_details[].file_name

	string

	Name of the datafile stored on the GDC system.

	data_details[].file_name_key

	string

	Google Cloud Storage path to file.

	data_details[].file_size

	string

	The size of the file

	data_details[].index_file_name

	string

	For BAM files, the name of its index file

	data_details[].platform

	string

	The sequencing or array platform used, e.g. Illumina HiSeq, Ion Torrent PGM, Affymetrix SNP Array 6.0.

	data_details[].program_name

	string

	The program for which the data was generated, e.g. ‘CCLE’, ‘TARGET’,’TCGA’.

	data_details[].project_short_name

	string

	The id of the project, e.g. ‘CCLE-ACC’, ‘CCLE-UVM’, ‘TARGET-ALL-P1’, ‘ TARGET-WT’, ‘TCGA-ACC’, ‘TCGA-UVM’

	data_details[].sample_barcode

	string

	Sample barcode.

	data_details[].sample_gdc_id

	string

	The GDC assigned id for the sample

	data_details[].sample_type

	string

	The sample type, e.g. ‘01’, ‘10’, ‘11’

	data_details_count

	integer

	Number of files associated with the sample barcode.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

users().get()

Returns the dbGaP authorization status of the user.

Example:

python isb_curl.py https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/users

API explorer example:

Click here [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_ccle_api/v3/isb_cgc_ccle_api.users.get?/] to see this endpoint in Google’s API explorer.

Python API Client Example:

from googleapiclient.discovery import build
from oauth2client.client import OAuth2WebServerFlow
from oauth2client import tools
from oauth2client.file import Storage
import httplib2
import os

CLIENT_ID = '907668440978-0ol0griu70qkeb6k3gnn2vipfa5mgl60.apps.googleusercontent.com'
CLIENT_SECRET = 'To_WJH7-1V-TofhNGcEqmEYi'
EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email'
DEFAULT_STORAGE_FILE = os.path.join(os.path.expanduser('~'), '.isb_credentials')

def get_credentials():
 oauth_flow_args = ['--noauth_local_webserver']
 storage = Storage(DEFAULT_STORAGE_FILE)
 credentials = storage.get()
 if not credentials or credentials.invalid:
 flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, EMAIL_SCOPE)
 flow.auth_uri = flow.auth_uri.rstrip('/') + '?approval_prompt=force'
 credentials = tools.run_flow(flow, storage, tools.argparser.parse_args(oauth_flow_args))
 return credentials

def get_authorized_service():
 api = 'isb_cgc_ccle_api'
 version = 'v3'
 site = 'https://api-dot-isb-cgc.appspot.com'
 discovery_url = '%s/_ah/api/discovery/v1/apis/%s/%s/rest' % (site, api, version)
 credentials = get_credentials()
 http = credentials.authorize(httplib2.Http())
 if credentials.access_token_expired or credentials.invalid:
 credentials.refresh(http)
 authorized_service = build(api, version, discoveryServiceUrl=discovery_url, http=http)
 return authorized_service

service = get_authorized_service()
data = service.users().get().execute()

Request

HTTP request:

GET https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_ccle_api/v3/users

Parameters

None

Response

If successful, this method returns a response body with the following structure:

{
 "dbGaP_authorized": boolean,
 "message": string
}

	Parameter name

	Value

	Description

	dbGaP_authorized

	boolean

	True or false.

	message

	string

	Message indicating the authorization status of the user.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Using Google Compute Engine

For those ISB-CGC users whose research goals require the ability
to run large compute jobs, all of the
power and infrastructure behind Google Compute
(Compute Engine [https://cloud.google.com/compute/],
Container Engine [https://cloud.google.com/container-engine/],
Dataproc [https://cloud.google.com/dataproc/], and
Dataflow [https://cloud.google.com/dataflow/]) and
Google Genomics [https://cloud.google.com/genomics/],
are at your disposal.

Our goal is to help you assemble the tools and
data (TCGA data, your data, reference data, etc) that you need to
answer your research questions in the most efficient and cost-effective
way possible.

Towards that end, we have created a github repository called
examples-Compute [https://github.com/isb-cgc/examples-Compute]
with examples to get you started.
This repository will continue to grow and we welcome your contributions and suggestions.
You can also find a number of useful
recipes [https://googlegenomics.readthedocs.org/en/latest/sections/process_data.html]
in the
Google Genomics Cookbook [https://googlegenomics.readthedocs.org/en/latest/index.html],
also here on readthedocs.

For an introduction to using Google Compute Engine, please follow the link below.

	Introduction to Google Compute Engine

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Introduction to Google Compute Engine

Google Compute Engine (GCE) is the Infrastructure as a Service (IaaS) component of Google
Cloud Platform (GCP). GCE [https://cloud.google.com/compute/docs/]
offers scale, performance and value, letting you easily create and run
virtual machines (VMs) on Google infrastructure.

We have tried to put together some basic documentation for ISB-CGC users who are new
to the Google Cloud Platform, but your main source of information should generally
be the official Google Cloud Platform documentation [https://cloud.google.com/docs].
We have found that sometimes the wealth of available information can result in
information overload, so we hope that this brief introduction will be useful to you.
If you are still feeling lost, please let us know and we’ll do our best to get you pointed
in the right direction.

	Setting up your GCP project

	Launching a Virtual Machine (VM)

	Creating and Managing Persistent Disks

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Setting up your GCP project

This setup guide assumes that you are already a member of a GCP project with either
“Owner” or “Editor” rights. If you need a GCP project, you may request one as part of
the ISB-CGC community evaluation phase going on now.

Google Cloud Console

If you are new to the Google Cloud, it is a good idea to become familiar with the
Cloud Console [https://console.cloud.google.com] (which we will
generally refer to simply as the Console). You can get help from within the Console
by clicking on the Help (question mark) icon near the upper right-hand corner.
The Console provides a convenient web UI for managing resources within your cloud project,
and can be useful for obtaining a quick, high-level snapshot of the state of your project.
The “Home” page will list, for example, the number of buckets you have created in Cloud
Storage, the number of datasets in BigQuery, and the number of VMs you have running under
App Engine or Compute Engine.
It also shows the charges incurred by this project so far this month.

Enable the Compute Engine API

The Compute Engine API is probably enabled by default on your GCP project, but you
can verify this through the Console: click on the menu icon
in the upper left hand corner (when you hover over it you will see “Products and services”),
and then select the API Manager. The API Manager page has two sections: Overview and
Credentials. Within the Overview page, you can see a list of all “Google APIs” and
a list of the “Enabled APIs”.

You can check your list of “Enabled APIs”, or simply select the “Compute Engine API” link
which should be at the very top of the list of “Popular APIs”. Once you are on the
“Google Compute Engine” page, you should either see a blue button with the word “Enable”
or a white “Disable button.
If the button says Enable, click on it. This process will take a minute or two,
after which you will be prompted to “Go to Credentials”. You should not need to create
new credentials at this time – you will typically be using
Application Default Credentials [https://developers.google.com/identity/protocols/application-default-credentials?hl=en_US].
(This blog post [http://googlecloudplatform.blogspot.com/2015/07/Easier-Auth-for-Google-Cloud-APIs-Introducing-the-Application-Default-Credentials-feature.html]
introducing Application Default Credentials may also be helpful.)
The proper use of credentials is frequently one of the most complicated
aspects of interacting with the Google Cloud Platform. If you are having problems, please
let us know.

You may also find the official Compute Engine
Getting Started Guide [https://cloud.google.com/compute/docs/quickstart] helpful.

Google Cloud SDK

Depending on how you choose to interact with the Google Cloud Platform, you may want
to install the Google Cloud SDK [https://cloud.google.com/sdk/] on your local workstation.
The Google Cloud SDK is a set of command-line interface (CLI) tools
that you can use to manage resources and applications
hosted on GCP.
(Note that components of the the SDK are updated quite frequently. You will be notified
when updates are available anytime you use one of the SDK tools. The command will still run,
but you will be notified that
“Updates are available for some Cloud SDK components” and you will be given instructions on how to
update your local copy of the SDK.)

Confirm that you have installed the SDK and have access to it by typing gcloud --version
at the command line of your own linux workstation or from the Cloud Shell (for more details
about the Cloud Shell, see the next section). You should see something like this:

Google Cloud SDK 98.0.0

bq 2.0.18
bq-nix 2.0.18
core 2016.02.22
core-nix 2016.02.05
gcloud
gsutil 4.16
gsutil-nix 4.15

Google Cloud Shell

Google Cloud Shell [https://cloud.google.com/shell/docs/] provides you with command-line
access to computing resources hosted on GCP is available from the Console. Cloud Shell provides
you with a temporary VM running a Debian-based Linux OS, with 5 GB of persistent disk storage
per user, and the Google Cloud SDK and other tools pre-installed.

From the Console, you will find the icon for the Cloud Shell in the top-most blue bar, near
the right-hand corner, between your GCP project name and the “Send feedback” icon. If you
click on that icon (the hover-card should read “Activate Google Cloud Shell”),
it will take a minute or two for you VM
to be provisioned, after which you will see a prompt saying “Welcome to Cloud Shell” in the
new window that has appeared at the bottom of your Console page. You can “pop” that
window out of your browser page by clicking on the “Open in new window” icon in the upper
right-hand corner of the shell window.

Authenticate with Google

Regardless of how you choose to interact with the Google Cloud, you will need to authenticate
yourself. How this authentication takes place will depend on “where” you are. If you
have signed into Chrome using your Google identity and you then go to the Console, you will
already have been authenticated. If you are at the Linux prompt of the Cloud Shell, you
have also already been authenticated because that Shell (and that VM) were launched for
you from your Console. If you are at the Linux prompt of your local workstation, you will
need to authenticate using the gcloud command line utility.

There are two approaches:

	gcloud init [https://cloud.google.com/sdk/gcloud/reference/init] launches an interactive Getting Started workflow for gcloud;

	gcloud auth login [https://cloud.google.com/sdk/gcloud/reference/auth/login] obtains access credentials for your user account via a web-based authorization flow.

These approaches may ask you to cut-and-paste a long URL into a browser, sign in using your Google
credentials, click “Allow” to allow Google to access certain information about you, and may also
ask that you cut-and-paste an authorization token from your browser back into the Linux shell.

Once you have authenticated, you can see information about your current configuration by
typing gcloud config list. You can set additional properties using the gcloud config set
command. The most common properties you are likely to want to verify
(list [https://cloud.google.com/sdk/gcloud/reference/config/list]), or
set [https://cloud.google.com/sdk/gcloud/reference/config/set] explicitly are:

	account

	project

	compute/region

	compute/zone

	container/cluster

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Launching a Virtual Machine (VM)

You can launch a virtual machine (which we will generally refer to as a VM) from the
Console or from the command line using the Google Cloud SDK. We will describe both
of these approaches here.

You should already be somewhat familiar with the Console, and hopefully you have tried
invoking the gcloud command from your command-line.
The gcloud command-line tool can be used to manage both your development workflow
and your GCP resources. (For more details, please look at the official
gcloud Tool Guide [https://cloud.google.com/sdk/gcloud/].)

Bundled into the gcloud [https://cloud.google.com/sdk/gcloud/reference/]
CLI are several commands and groups of sub-commands. The group of sub-commands
that allows you to read and manipulate GCE resources is
gcloud compute [https://cloud.google.com/sdk/gcloud/reference/compute/]

Launch a VM using the Console

After you have enabled the Compute Engine API for you project, you can go the Compute Engine
section of the Console. (Select the menu icon in the far upper-left corner, and then choose
“Compute Engine” from the flyout panel.) The first time, you may need to wait a minute or
so while “Compute Engine is getting ready.”

You will now be on the “VM instances” page. (There are may other pages that are accessible
from the left side-panel.)
The first time you visit this page, you will see two options: “Create Instance” or “Take the quickstart”.
After the first time, you may see a different page with a list of existing (running or stopped) VMs
with a CPU utilization graph. At the top of this page, you will see options to “CREATE INSTANCE”,
“CREATE INSTANCE GROUP”, “RESET”, “START”, “STOP”, and “DELETE” VM instances.

After selecting the “Create Instance” option, you will be sent to the “Create an instance” page
where defaults will be selected for the Name, Zone, Machine type, etc:

	Name: this name is relatively arbitrary, choose something that is meaningful to you;

	Zone: choose one of the us-east or us-central zones;

	Machine type: you can specify a VM with anywhere between 1 and 16 cores (aka vCPUs), and with up to 100 GB of RAM (you can try the “Customize” view if you prefer a more graphical approach); note that as you change the specifications of the VM, the estimated cost shown on this page will update;

	Boot disk: the default boot disk and OS will be shown, but you can change this as you wish: the “Change” button will result in a flyout panel where you can choose from a variety of Preconfigured images (Debian, CentOS, Ubuntu, RedHat, etc) or previously created images or disks; you can also choose between “standard disks” and faster (and more expensive) solid-state drives (SSDs), and specify the size of the disk (up to 64TB).

Other options below the “Management, disk, …” line include Preemptibility (default is OFF),
Automatic restart (default is ON), and what to do during infrastructure maintenance (default
is to “migrate VM” so that you will not experience any downtime).

Once you have all of the options set, you can click on the blue Create button. You can also
see you could use the REST or command-line interfaces to do perform the exact same option.
(The Console is just a friendlier interface between you and more direct REST-based access to the same
functionality.)

Creating the VM should take less than a minute, after which you will see it listed on the “VM instances”
page, with the Name, Zone, Disk, Network, and External IP address shown. There is also an SSH button
that you can use directly from the Console.

Launch a VM using the CLI

The command to create a new GCE VM instance is gcloud compute instances create. The complete
documentaiton can be found
online [https://cloud.google.com/sdk/gcloud/reference/compute/instances/create]
or by typing gcloud compute instances create --help on the command line.

Some defaults can be obtained (if available)
from your configuration settings. For example, if you don’t want
to have to specify the zone of the instances, you can set the compute/zone property, for example:
`
gcloud config set compute/zone us-central1-a
`
A list of zones can be fetched by running:
`
gcloud compute zones list
`

Here is a very simple command to create a VM:
`
gcloud compute instances create my-instance --machine-type g1-small
`

Accessing your new VM

Whether you have created your VM from the Console or using the gcloud CLI, you can find it and
ssh to it, again using either the Console or the CLI:

	From the Console, go to Compute Engine > VM instances, and then click on the SSH button on the far-right of the row describing the specific VM you would like to connect to.

	Using the CLI, simply use the command gcloud cmopute ssh followed by the instance name.

Shutting down your VM

Remember that as long as your VM is running, whether or not you are actually doing anything with it,
charges will be incurred. It is therefore a good idea to get in the habit of shutting down VMs as
soon as you are finished with your work. They can easily be restarted an hour, day, or week later.
Note that resources that are attached to a stopped VM (such as persistent disks) will, however
continue to incur charges. Compared to the cost of the VM, though, the cost of a persistent disk
is typically negligible: a 50 GB standard persistent disk only costs $2 per month, and 1 TB costs $40.

If you know that you won’t never need this specific VM again, or you don’t want to continue paying for
the persistent disk, or you would rather start a fresh VM with an updated OS next time, then you can go
ahead and delete the VM rather than just stopping it.

From the command-line, the relevant commands are gcloud compute instances stop and
gcloud compute instances delete.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Creating and Managing Persistent Disks

As described in the previous section, you can specify the boot disk when launching a VM from
the Console and from the command-line. There are times when you may want to create and attach
additional disks to an instance. There are three main steps in this process: you must first
create the disk, then you must attach it to the instance, and finally you must format it.
When you are finished, you may want to detach the disk and when you are done with it, you
will want to delete it. We will describe each of these steps in a bit more detail below.
You may also want to see the Google documentation on
Adding Persistent Disks [https://cloud.google.com/compute/docs/disks/persistent-disks].

Create a Persistent Disk

The gcloud command for creating a persistent disk is gcloud compute disks create.
The most common options you’ll probably use are --size, --type, and --zone
(see this [https://cloud.google.com/sdk/gcloud/reference/compute/disks/create] page for
more details). For example:

gcloud compute disks create disk-1 --size 500GB

will create a 500 GB disk named “disk-1”, using default settings (eg the type will be pd-standard).

Attach a Persistent Disk

The gcloud command to attach a newly created disk to a previously created instance looks like this:

gcloud compute instances attach-disk –disk disk-1 –device-name my-instance

Note that this command is part of the gcloud compute instances group rather than the
gcloud compute disks group. Details about additional options can be found in the
documentation [https://cloud.google.com/sdk/gcloud/reference/compute/instances/attach-disk].
For example the default mode is rw (read-write), but you can also specify that a
disk be attached ro (read-only).

Format a Persistent Disk

In order to format a disk that you’ve attached to an instance, you need to first log on to that instance:

gcloud compute ssh my-instance

For complete details, please refer to the Google documentation on
formatting [https://cloud.google.com/compute/docs/disks/persistent-disks#formatting]
and mounting non-root persistent disks;
but there are two main steps: first you must format the disk using the mkfs tool
(note that this will delete any existing data on the disk), and second you must use
the mount tool to mount the disk at a specified mount-point:

sudo mkfs.ext4 -F /dev/disk/by-id/disk-1
sudo mkdir /mnt/pd1
sudo mount -o discard,defaults /dev/disk/by-id/disk-1 /mnt/pd1

Detach a Persistent Disk

Detaching a disk is a two step process: first you unmount the disk (using the umount command,
from the instance to which it is attached), and then (after logging out from that instance)
you use the gcloud tool:

$sudo umount /dev/disk/by-id/disk-1
$exit

gcloud compute instances detach-disk my-instance --disk disk-1

Delete a Persistent Disk

Note that a boot disk will be deleted if you delete the instance that it is attached to (as long
as the auto-delete property for the disk was set to “yes” (the default) when it was created). In all
other cases, you will need to
delete [https://cloud.google.com/sdk/gcloud/reference/compute/disks/delete]
the disk manually using the gcloud compute disks delete
command. Note that disks can be deleted only if they are not being used by any VM instances.

You can also see and manage persistent disks from the Console on the Compute Engine > Disks page.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Viewing and using cohorts in the Webapp and API

Cohorts are one of the central concepts that researchers use when analyzing large datasets. As has been discussed elsewhere in the documentation, cohorts can be created either in the Webapp or via the ISB-CGC REST API. What may not be as clear is that cohorts created by one of the systems can be viewed and used in the other. In other words, you can create a cohort using the API and use it in the webapp or you can create a cohort in the webapp and use it in the API. This can give researchers significant flexibility in creating and sharing their cohorts.

It should be noted that the details of how to use the APIs can differ significantly depending on how users access the REST APIs. The examples given here are assuming users only have access to a console and not a higher-level language like Python where the APIs can be used more programatically. Additionally, the examples shown here are using the TCGA endpoint, but exactly the same functionality is avialable for TARGET and CCLE using the endpoints specific to those programs.

Related documents:

	Creating Saved Cohorts in the Web Application [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Saved-Cohorts.html]

	Details of “Cohorts… APIs” in the ISB-CGC API documentation [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/Programmatic-API.html]

Listing Cohorts

Any cohort you’ve previously created can be seen using either the Webapp or the API. In the Webapp, cohorts can be viewed both on the front page of the app as well as on the Cohorts page as shown in Figure 1.

[image: ../../_images/Fig1-WebappCohorts.png]
Figure 1: Cohorts shown on the front page (top) and Cohorts page (bottom) in the Webapp

Similarly, the cohorts().list() endpoint of the ISB-CGC API will return exactly the same set of cohort. The Google API Explorer [https://apis-explorer.appspot.com/apis-explorer/?base=https%3A%2F%2Fapi-dot-isb-cgc.appspot.com%2F_ah%2Fapi#p/isb_cgc_api/v2] is a convenient tool for examining API output from within a browser. In addition to showing the data returned from a query, it will also show a constructed query that can be used in a script (see Figure 2).

[image: ../../_images/Fig2-APIResponseNamesOnly.png]
Figure 2: Google API Explorer

Creating Cohorts

Creating cohorts using the Webapp [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Saved-Cohorts.html] has been fully documented and needs no further explanation. Creating cohorts using the API uses two different endpoints, cohorts().preview() [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/progapi3_tcga/cohorts_preview.html] and cohorts().create() [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/progapi3_tcga/cohorts_create.html]. These two endpoints have exactly the same query capabilities and differ only in that the preview endpoint will return the results of the query without creating a cohort while the create endpoint will create the cohort and name it using the name provided with the name attribute. In addition, due to the authentication requirement for the create endpoint, the query is sent as a JSON object

In the following example, the first query creates a cohort of patients from the UCS and CESC studies who were 20 years old or younger at the time of diagnosis. Since this query is run against the preview endpoint, no cohort is actually created, only the results shown in Figure 3 are returned.

https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/preview?age_at_initial_pathologic_diagnosis_lte=20&project_short_name=TCGA-UCS&project_short_name=TCGA-CESC

https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/preview?age_at_initial_pathologic_diagnosis_lte=20&project_short_name=TCGA-UCS&project_short_name=TCGA-CESC

Figure 3: Using Google API Explorer to preview creating a cohort

Due to the need for authentication and cohort naming, actually creating the cohort requires some modifications of the preview query. First, the name attribute needs to be specified with the name users will see in both the Webapp and in the cohorts().list() endpoint.:

https://api-dot-isb-cgc.appspot.com/_ah/api/isb_cgc_tcga_api/v3/cohorts/create?name={COHORT NAME}

Additionally a JSON object containing the query needs to be created.

{"Study": ["TCGA-UCS", "TCGA-CESC"], "age_at_initial_pathologic_diagnosis_lte": 20}

The commands above will create a cohort via the API

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Running Workflows

The concept of a workflow was
defined [http://www.aiai.ed.ac.uk/project/wfmc/ARCHIVE/DOCS/glossary/glossary.html]
about 20 years ago by the
Workflow Management Coalition [http://www.wfmc.org/]
as: “The automation of a business process, in whole or part, during which documents,
information or tasks are passed
from one participant to another for action, according to a set of procedural rules.”
The focus of this particular organization is on something called
BPM or Business Process Management.

Scientific workflows have emerged to manage and describe the complexity that arises
in scientific experiments, as well as data analysis and data processing. Complex
workflows are created by linking or chaining several components or tasks into a pipeline.

A complete scientific workflow system requires first a clearly defined language
and grammar which can be used to describe a workflow. Given a clearly specified
workflow, a “workflow runner” of some sort is necessary in order to be able to actually
run the workflow. A “runner” generally implements the following “roles”:
a master or administrator, a scheduler, a task executor, and workers: in which the master
receives and parses workflow document(s) and communicates requirements to the scheduler;
the scheduler is typically trying to optimize usage of the available workers based
on the requirements of the master(s), the executor causes tasks to be run on the specified
schedule, and the workers do the work.

Although there are numerous bioinformatics workflow systems, the two that we will
focus on at this time are:
CWL (Common Workflow Language [http://www.commonwl.org/])
and WDL (Workflow Description Language [https://software.broadinstitute.org/wdl/])
which are further described in the sections below.

Additionally, the ISB-CGC-pipelines framework has been developed to facilitate running
single step tasks at scale, for example: running FastQC over tens of thousands of FastQ
files.

	The Common Workflow Language (CWL)

	The Workflow Description Language (WDL)

	ISB-CGC-pipelines Framework

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

The Common Workflow Language (CWL)

The Common Workflow Language [http://www.commonwl.org/] (CWL) is emerging as a standard
for defining and sharing bioinformatic workflows, and the
NCI-GDC [https://gdc.cancer.gov/] is planning to release all of its
standardized workflows in this format.

In the sections below, we present a tutorial on running a sample NCI-GDC workflow with
step-by-step instructions to run it on a sample input BAM file using a Google Compute Engine
(GCE) VM. The second section describes how to use a convenient “helper-script”
called cwl_runner (available on github)
which wraps many of the individual steps required to create a GCE disk, spin up
a GCE VM, mount and format the disk, etc, allowing you to run a CWL workflow
in one easy step.

	Running the NCI-GDC DNA-Seq workflow

	The cwl_runner “helper” script

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Running the NCI-GDC DNA-Seq workflow

In this section,
we will guide you through the steps to run the NCI-GDC’s DNA-Seq harmonization workflow
on Google Compute Engine. This workflow is available on github
here [https://github.com/NCI-GDC/gdc-dnaseq-cwl].
The instructions here are based on the NCI-GDC’s
README [https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/README.md]
and have been customized to run on GCE.

1. Create a GCE VM with Disk

From the Cloud Console > Compute Engine > VM instances
page [https://console.cloud.google.com/compute/instances]
click on [+] CREATE INSTANCE, and:

	set Name (eg cwl-test-1)

	set Zone (eg us-central1-c)

	set Machine type (eg 4 vCPUs with 15 GB memory)

	Change the boot disk to Ubuntu 14.04 LTS with 10 GB standard persistent disk (note that the boot disk will be named the same as the VM, ie cwl-test-1)

	leave the Identity and API access box as is (with “Compute Engine default service account” and “Allow default access” selected)

	expand the “Management, disk, networking, SSH keys section”:

	select the Disks tab

	click on + Add item

	in the Name pull-down, select “Create disk”: a “Create a disk” panel will open:

	set Name (eg cwl-disk-1) – do not use the same name as the VM!

	set Source type to “None (blank disk)”

	set Size (eg 500 GB)

	leave default Encryption (which is “Automatic (recommended)”)

	click on the blue Create button – this will create the disk only at this time

	before clicking on the Create button (for the VM), click on the bottom line where it says “Equivalent REST or command line” – you can save this command-line and re-use it later to create the same VM from the command-line rather than repeating this interactive process; it is also a nice record of exactly how the VM was created

	now click on the Create button – you will see the VM “spinning up” on the VM instances page

Example command-line equivalents to create the disk and the VM (you will need to substitute in your own
Google Cloud Platform (GCP) project:

$ gcloud compute --project <YOUR-PROJECT-ID> disks create "cwl-disk-1" --size "500" --zone "us-central1-c" --type "pd-standard"

$ gcloud compute --project <YOUR-PROJECT-ID> instances create "cwl-test-1" --zone "us-central1-c" --machine-type "n1-standard-4" --network "default" --maintenance-policy "MIGRATE" --scopes default="https://www.googleapis.com/auth/devstorage.read_only","https://www.googleapis.com/auth/logging.write","https://www.googleapis.com/auth/monitoring.write","https://www.googleapis.com/auth/servicecontrol","https://www.googleapis.com/auth/service.management.readonly","https://www.googleapis.com/auth/trace.append" --disk "name=cwl-disk-1,device-name=cwl-disk-1,mode=rw,boot=no" --image "/ubuntu-os-cloud/ubuntu-1404-trusty-v20161205" --boot-disk-size "10" --boot-disk-type "pd-standard" --boot-disk-device-name "cwl-test-1"

2. Configure the VM

Now you can ssh to your VM from any command-line where you have the cloud SDK installed.
If you don’t have the cloud SDK installed on your local machine, you can use the
Cloud Shell [https://cloud.google.com/shell/docs/] directly from your browser in the
Cloud Console [https://console.cloud.google.com].

$ gcloud compute --project <YOUR-PROJECT-ID> ssh --zone "us-central1-c" "cwl-test-1"

2.1 Install Packages

Use the following commands to install the necessary packages:

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D

$ echo "deb https://apt.dockerproject.org/repo ubuntu-trusty main" | sudo tee /etc/apt/sources.list.d/docker.list

$ sudo aptitude update

$ sudo aptitude install apt-transport-https ca-certificates docker-engine htop libffi-dev libssl-dev nodejs python-dev virtualenvwrapper

After this last command, you will need to respond “Yes” to install the new packages.

2.2 Format and Mount the Disk

You can see the disks that are attached to your VM by using the following command:

$ ls /dev/disk/by-id

which should respond with something like:

google-cwl-disk-1 google-cwl-test-1-part1 scsi-0Google_PersistentDisk_cwl-test-1
google-cwl-test-1 scsi-0Google_PersistentDisk_cwl-disk-1 scsi-0Google_PersistentDisk_cwl-test-1-part1

The first disk listed above (google-cwl-disk-1) is the additional disk that was crated, while the
second one (google-cwl-test-1) is the boot disk, with the same name as the VM. The following
commands differ slightly from those specified in the NCI-GDC README but the result will be the same:

$ sudo mkfs.ext4 -F -E lazy_itable_init=0,lazy_journal_init=0,discard /dev/disk/by-id/google-cwl-disk-1
$ sudo mkdir -p /mnt/SCRATCH
$ sudo mount -o discard,defaults /dev/disk/by-id/google-cwl-disk-1 /mnt/SCRATCH
$ sudo chmod 777 /mnt/SCRATCH

You can now verify that the disk has been properly mounted using the df -h command:

$ df -h

File system Size Used Avail Use% Mounted on
/dev/sdb 493G 70M 467G 1% /mnt/SCRATCH

and as you can see, close to 500G of space is available mounted as /mnt/SCRATCH.

2.3 Prepare Docker and CWL

These next sets of commands will get you ready to run docker on this VM. You will need to
log out and log back in a couple of times to force certain changes to take effect.

$ mkdir /mnt/SCRATCH/docker
$ sudo bash -c 'echo DOCKER_OPTS=\"-g /mnt/SCRATCH/docker/\" >> /etc/default/docker'
$ sudo gpasswd -a ${USER} docker
$ sudo service docker restart
$ exit

The last command will log you out of your VM, so you will need to log back in using the same
gcloud ssh command you used before. Once you’re back on the VM:

$ echo "source /usr/share/virtualenvwrapper/virtualenvwrapper.sh" >> ~/.bashrc
$ exit

Sign back in again, and then create a “virtualenv” called “cwl”. This will change your
command-line prompt to indicate that you are in a new environment:

$ mkvirtualenv --python /usr/bin/python2 cwl
(cwl) $

A few more install commands and you’ll be ready to go:

(cwl)$ pip install --upgrade pip
(cwl)$ pip install 'requests[security]' --no-cache-dir
(cwl)$ wget https://github.com/NCI-GDC/cwltool/archive/1.0_gdc_g.tar.gz
(cwl)$ pip install 1.0_gdc_g.tar.gz --no-cache-dir

3. Run the DNA-Seq workflow

3.1 Clone the NCI-GDC github repo

You should now be in your home directory, in the (cwl) virtualenv. Clone the NCI-GDC dna-seq-cwl repo:

(cwl)$ git clone https://github.com/NCI-GDC/gdc-dnaseq-cwl.git

Now you will have a subdirectory called gdc-dnaseq-cwl in your home directory, containing
the NCI-GDC DNA-Seq harmonization workflow. The main workflow is in the CWL file
~/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl.

3.2 Load Reference and Input Data Files

The DNA-Seq workflow requires some reference data files that can be obtained from the NCI-GDC.
These include the dbsnp vcf (3 GB), the reference genome (835 MB), and the bwa indexed genome (3.2 GB).
(Uploading these to your VM disk should take 5-10 minutes.)

(cwl)$ mkdir /mnt/SCRATCH/hg38_reference
(cwl)$ cd /mnt/SCRATCH/hg38_reference
(cwl)$ wget https://gdc-api.nci.nih.gov/data/4ba1c087-ec80-47c4-a9d5-e9bb9933fef4 -O dbsnp_144.hg38.vcf.gz
(cwl)$ wget https://gdc-api.nci.nih.gov/data/62f23fad-0f24-43fb-8844-990d531947cf
(cwl)$ tar xvf 62f23fad-0f24-43fb-8844-990d531947cf
(cwl)$ wget https://gdc-api.nci.nih.gov/data/964cbdac-1043-4fae-b068-c3a65d992f6b
(cwl)$ tar xvf 964cbdac-1043-4fae-b068-c3a65d992f6b

Finally, let’s copy a small example BAM file (300 MB) from the 1000G repository:

(cwl)$ cd /mnt/SCRATCH
(cwl)$ wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/NA12878/alignment/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.bam

At this point you could also obtain a bam file either from the NCI-GDC or from one of the
ISB-CGC Cloud Storage buckets.

3.3 Run DNA-Seq CWL workflow

Now we’re ready to run the workflow using the CWL-runner cwltool. The input file that we just copied
to our VM disk is in /mnt/SCRATCH/alignment/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.bam.
Let’s create a sub-directory for the processed results:

(cwl)$ mkdir /mnt/SCRATCH/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211
(cwl)$ cd /mnt/SCRATCH/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211
(cwl)$ mkdir tmp cache
(cwl)$ nohup cwltool --debug --tmpdir-prefix tmp/ --cachedir cache/ \
 ~/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl \
 ~/gdc-dnaseq-cwl/workflows/dnaseq/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.json &

While that is running, you can go back to the Cloud Console, to the Compute Engine > VM instances
page, and click on the name of this VM. This will take you to a page describing this specific VM,
and you can see a trace of CPU utilization, and other metrics.

Let’s also take a closer look at the cwltool command used above.
You can find more details at the
cwltool github repo [https://github.com/common-workflow-language/cwltool]
and at commonwl.org [http://www.commonwl.org/v1.0/CommandLineTool.html].
The basic form of the cwltool command is:

$ cwltool [tool-or-workflow-description] [input-job-settings]

Looking at the way cwltool was invoked above, we see that the tool-or-workflow-description
is in ~/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl and the input-job-settings
are in ~/gdc-dnaseq-cwl/workflows/dnaseq/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.json.
Let’s have a closer look at those, starting with the smaller input-job-settings JSON document.
It defines three objects, each of which is of class “File”, with a specified “path”, eg:

"bam_path": {
 "class": "File",
 "path": "/mnt/SCRATCH/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.bam"
}

and it also specifies a “thread_count” value (8), and a “uuid”. You can see these inputs
defined near the top of the CWL document
(transform.cwl [https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/workflows/dnaseq/transform.cwl]).

3.4 Run-time and Compute-costs

This sample task takes about 2 hours to run. The costs associated with running this task are:
2 hours of GCE VM time plus 2 hours of persistent disk time
(GCE pricing details [https://cloud.google.com/compute/pricing]),
which comes to approximately $0.400 for the VM and $0.056 for the persistent disks,
for a total of $0.456.
(The n1-standard-4 VM chosen above costs $0.200 per hour, and the disk costs,
at $0.040 per GB per month for standard provisioned space, were computed as
510 GB x $0.040 per GB per month x 2 hours / 730 hours per month.)

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

The cwl_runner “helper” script

The cwl_runner script can be found on github in the googlegenomics/pipelines-api-examples repository, in the
cwl_runner [https://github.com/googlegenomics/pipelines-api-examples/tree/master/cwl_runner] folder.
You may want to refer to the
README [https://github.com/googlegenomics/pipelines-api-examples/blob/master/cwl_runner/README.md]
file in the github repo, we will also provide an overview and summary of what
this script does below, with some additional details that you may find useful.

	The basic prerequisites to be able to run this example are:

	
	you have the necessary privileges to launch a VM in a Google Cloud Project (GCP) project

	you must have an existing Google Cloud Storage (GCS) bucket

	you have the Cloud SDK installed

	There are three scripts in the github repo:

	
	cwl_runner.sh is the main bash script which takes care of most of the steps described in this tutorial [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/CWL_intro.html];

	cwl_startup.sh is the VM startup script which will automatically be run as soon as the VM spins up;

	cwl_shutdown.sh is the VM shutdown script which takes care of final steps such as copying stdout and stderr to GCS;

The main script,
cwl_runner.sh [https://raw.githubusercontent.com/googlegenomics/pipelines-api-examples/master/cwl_runner/cwl_runner.sh],
is the only one that you will invoke directly. It has several different options (which you can learn
more about by using the --help option), but the only required ones are:

	--workflow-file PATH: the absolute path to the CWL workflow document;

	--settings-file PATH: the absolute path to the JSON settings file;

	--output GCS_PATH: the output location in GCS where all outputs and logs will be copied after the workflow completes.

The script then invokes two gcloud compute commands (gcloud is part of the
cloud SDK [https://cloud.google.com/sdk/]:

	gcloud compute disks create: to create a persistent disk in the (optionally user-specified) zone, of (optionally user-specified) size;

	gcloud compute instances create: to create a virtual machine (VM), in the same zone as the disk, with the previously created disk attached, with the (optionally user-specified) machine type.

If the user specifies, the VM can be a
preemptible [https://cloud.google.com/compute/docs/instances/preemptible]
VM, which can be a good way to minimize compute costs, under the right circumstances.

The other information that the VM needs is passed in as
metadata [https://cloud.google.com/compute/docs/storing-retrieving-metadata].
Metadata is stored as key:value pairs. There is a default set of metadata
entries that every VM has access to, and
custom metadata [https://cloud.google.com/compute/docs/storing-retrieving-metadata#custom]
can also be set when a VM is created. This metadata will be available to the VM from
the metadata server [https://cloud.google.com/compute/docs/storing-retrieving-metadata#querying].

	The following metadata keys are specified by the cwl_runner script and will be available to the VM:

	
	startup-script-url

	shutdown-script-url

	operation-id

	workflow-file

	settings-file

	input

	input-recursive

	output

	runner

	status-file

	keep-alive

The cwl_runner script invoked by the user will create a random OPERATION-ID and
write three script files to the specified output location in GCS:

	cwl_runner-<OPERATION-ID>.sh

	cwl_startup-<OPERATION-ID>.sh

	cwl_shutdown-<OPERATION-ID>.sh

and will run the gcloud compute disks create command, followed by the gcloud compute instances create command.

In this case, the “startup” script will take care of pretty much everything we want this
particular VM to do:

	local bash variables are set based by retrieving the instance metadata from the metadata server

	the disk is mounted and formatted

	folders are created for workflow inputs and outputs

	input files are copied from GCS to local disk

	the workflow and settings files are copied from GCS to local disk

	the executor (cwltool) is invoked to run the workflow

	outputs are copied from local disk out to GCS

	the VM is shut down (using the command gcloud compute instances delete) unless the --keep-alive option was set

Following the example provided on github, you can invoke cwl_runner from the command-line (anywhere where you
have the Cloud SDK installed, with your GCS bucket and optional folder name instead of MY-BUCKET/my-work-folder below):

./cwl_runner.sh \
 --workflow-file gs://genomics-public-data/cwl-examples/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl \
 --settings-file gs://genomics-public-data/cwl-examples/gdc-dnaseq-cwl/input/gdc-dnaseq-input.json \
 --input-recursive gs://genomics-public-data/cwl-examples/gdc-dnaseq-cwl \
 --output gs://MY-BUCKET/my-work-folder \
 --machine-type n1-standard-4

	In this example, the JSON settings file specifies 5 items:

	
	bam_path (a small ~300MB low-coverage BAM for chromosome 20 only from the 1000G project)

	reference_fasta_path (the GRCh38 reference FASTA file from the GDC Reference Files [https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files])

	db_snp_path

	thread_count

	uuid

For more details on machine-types, please see the Google documentation on
predefined machine types [https://cloud.google.com/compute/docs/machine-types#predefined_machine_types]
and if you find that none of those quite fit your requirements you
may be interested in using one of the available
custom machine types [https://cloud.google.com/compute/docs/machine-types#custom_machine_types].

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

The Workflow Description Language (WDL)

The Workflow Description Language [https://software.broadinstitute.org/wdl/] (WDL)
which is in use at the Broad Institute, is an alternative to CWL.
It is supported by a powerful workflow execution engine
called Cromwell [https://github.com/broadinstitute/cromwell], which
includes multiple “backends” such as GridEngine, HTCondor, Spark,
the Google “Pipelines API” (formerly known as JES, ie “Job Execution Service”, aka GGP),
and the new GA4GH TES (ie “Task Execution Service”).

We will focus on the two backends that directly support running workflows
on Google Compute Engine VMs:

	Google Genomics Pipelines API [https://cloud.google.com/genomics/reference/rest/v1alpha2/pipelines] (formerly known as JES)

	GA4GH Task Execution Service [https://github.com/ga4gh/task-execution-server] (aka TES)

Google Genomics Pipelines

The so-called “Pipelines API” is a task runner that lets you run a command-line executable in Docker on a Google Compute Engine VM.
Since it is truly a “task” runner rather than a full “pipeline” runner, we generally refer to it as GGP so that the usage
of the word “pipeline” is not confusing. We also find the additional term “API” unnecessary.

GGP can be “called” using command-line interface (part of the Cloud SDK gcloud tool),
or as a web service API that can be called programmatically.
When using GGP from the command-line, each task is defined in a YAML (or JSON) file.

The Google documentation for the “Genomics Pipelines” can be found
here [https://cloud.google.com/genomics/v1alpha2/pipelines]
and on readthedocs [https://googlegenomics.readthedocs.io/en/latest/use_cases/run_pipelines_in_the_cloud/index.html],
and there are numerous easy-to-follow examples on github
here [https://github.com/googlegenomics/pipelines-api-examples].

You can use wdl_runner [https://github.com/googlegenomics/pipelines-api-examples/tree/master/wdl_runner]
to run a WDL workflow using Cromwell+GGP on the Google Cloud. Documentation can be found on
github [https://github.com/googlegenomics/pipelines-api-examples/blob/master/wdl_runner/README.md]
and you can run a GATK workflow by following this Google Genomics
documentation [https://cloud.google.com/genomics/v1alpha2/gatk].

GA4GH Task Execution Service

The GA4GH TES was inspired by GGP, with the broader goal of defining a platform agnostic interface between
workflow management systems, schedulers, and workflow language interpreters on the frontend of the TES
interface, and the actual workes, nodes, VMs, and filesystems on the backend. Although this effort
started only a few months ago, progress has been rapid and a reference implementation is available
on github [https://github.com/ga4gh/task-execution-server].

As described in this
post [http://gatkforums.broadinstitute.org/wdl/discussion/9219/testing-testing-1-2-3]
over on the WDL Blog, TES has been recently added as a new backend to Cromwell.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

ISB-CGC-pipelines Framework

This framework was built around the
Google Genomics Pipelines API [https://cloud.google.com/genomics/reference/rest/v1alpha2/pipelines]
(described in more detail below)
and is intended to allow you to run single tasks at scale, allowing you to tailor how and when
the tasks are submitted, monitor them as they finish etc.

Google Genomics Pipelines

The so-called “Pipelines API” is a task runner that lets you run a command-line executable in Docker on a Google Compute Engine VM.
Since it is truly a “task” runner rather than a full “pipeline” runner, we generally refer to it as GGP so that the usage
of the word “pipeline” is not confusing. We also find the additional term “API” unnecessary.

GGP can be “called” using command-line interface (part of the Cloud SDK gcloud tool),
or as a web service API that can be called programmatically.
When using GGP from the command-line, each task is defined in a YAML (or JSON) file.

The Google documentation for the “Genomics Pipelines” can be found
here [https://cloud.google.com/genomics/v1alpha2/pipelines]
and on readthedocs [https://googlegenomics.readthedocs.io/en/latest/use_cases/run_pipelines_in_the_cloud/index.html],
and there are numerous easy-to-follow examples on github
here [https://github.com/googlegenomics/pipelines-api-examples].

ISB-CGC-pipelines

The ISB-CGC-pipelines source code and documentation is available on
github [https://github.com/isb-cgc/ISB-CGC-pipelines]. Detailed documenation is
available directly in the
README [https://github.com/isb-cgc/ISB-CGC-pipelines/blob/master/README.md] on github,
and tutorial
slides [https://docs.google.com/presentation/d/1akqoZImzei2D47O8rcWrcEzsWPYxUtL-2-eUdiBzzgo/edit?usp=sharing]
are also available.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Frequently Asked Questions (FAQ)

ISB-CGC Accounts and Cloud Projects

Do I have to request an ISB-CGC account before I can try out the web interface?
No, you can just “sign in” to the web-app using your Google identity.

I want to be able to run big jobs using Google Compute Engine on the TCGA data hosted by the ISB-CGC. What should I do?
You will need to request a Google Cloud Platform (GCP) project. Please see Your Own GCP project for more details
about requesting a project.

Can I use any email address as a Google identity? Yes, you can. If your email address is not
already linked to a Google account, you can create [https://accounts.google.com/signupwithoutgmail] a Google account with your current email address.
Please note, however that although these two accounts will then share the same name, they will
still be two separate accounts, with two separate passwords, etc. (It is also possible
that your institutional email address is already a Google account, if your institution uses
Google Apps.
This [https://support.google.com/accounts/answer/40560?hl=en&ref_topic=3382296] is how to find out).

How do I connect my GCP project to the ISB-CGC?
Your GCP project gives you access to all of the technologies that make
up the Google Cloud Platform (GCP). These technologies include BigQuery, Cloud Storage, Compute Engine,
Google Genomics, etc. The ISB-CGC makes use of a variety of these technologies to provide access
to the TCGA data, without necessarily inserting an extra interface layer between you and the GCP. Although one
component of the ISB-CGC is a web-app (running on Google App Engine), some users may prefer not to go through
the web-app to access other components of the ISB-CGC. For example, the open-access TCGA data
that we have loaded into BigQuery tables can be accessed directly via the
BigQuery web interface [https://www.bigquery.cloud.google.com] or from Python or R. Similarly,
the ISB-CGC programmatic API is a REST service that can be used from many different
programming languages.

The connection between your GCP project (whether it is an ISB-CGC sponsored and funded project
or your own personal project) and the ISB-CGC is your Google identity
(also referred to as your “user credentials”).
Access to all ISB-CGC hosted data is controlled using access control lists (ACLs) which define the
permissions attached to each dataset, bucket, or object.

Data Access

Does all TCGA data require dbGaP authorization prior to access?
No, generally only the low-level sequence (DNA and RNA) and SNP-array data (CEL files) require
dbGaP authorization. All of the “high-level” molecular data, as well as the clinical data are
open-access and much of this has been made available in a convenient set of BigQuery tables.

Where can I find the TCGA data that ISB-CGC has made publicly available in BigQuery tables?
The BigQuery web interface can be accessed at bigquery.cloud.google.com. If you have not already added the ISB-CGC datasets to your BigQuery “view”, click on the blue arrow
next to your project name at the top of the left side-bar, select “Switch to Project”, then “Display Project…”,
and enter “isb-cgc” (without quotes) in the text box labeled “Project ID”. All ISB-CGC public BigQuery
datasets and tables will now be visible in the left side-bar of the BigQuery web interface.
Note that in order to use BigQuery, you need to be a member of a Google Cloud Project.

How can I apply for access to the low-level DNA and RNA sequence data?
In order to access the TCGA controlled-access data, you will need to apply to dbGaP [https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login].
Please also review our section on Understanding Data Security.

I have dbGaP authorization. How do I provide this information to the ISB-CGC platform?
In order for us to verify your dbGaP authorization, you first need to associate your Google identity
(used to sign-in to the web-app) with a valid NIH login (eg your eRA Commons id). After you have
signed in, click on your avatar (next to your name in the upper-right corner)
and you will be taken to your account details page where you can
verify your dbGaP authorization. You will be redirected to the NIH iTrust login page and after you
successfully authenticate you will be brought back to the ISB-CGC web-app. After you successfully
authenticate, we will verify that you also have dbGaP authorization for the TCGA controlled-access data.
We also ask that you review our section on Understanding Data Security.

My professor has dbGaP authorization. Do I have to have my own authorization too?
Yes, your professor will need to add you as a “data downloader” to his/her dbGaP application so that you
have your own dbGaP authorization associated with your own eRA Commons id.
(This video [https://www.youtube.com/watch?v=Yem3OH26kX4] explains how an authorized user of
controlled-access data can assign a downloader role to someone in his/her institution.)

I already authenticated using my eRA Commons id but now I want to use a different Google identity to
access the ISB-CGC web-app. Can I re-authenticate using the same eRA Commons id?
Yes, but you will first need to sign-in using your previous Google identity and “unlink” your eRA Commons
id from that one before you can link it with your new Google identity. An eRA Commons id cannot be
associated with more than one Google identity within the ISB-CGC platform at any one time.

Can I authenticate to NIH programmatically? No, the current NIH authentication flow requires
web-based authentication and must therefore be done from within the ISB-CGC web-app. Once you have
authenticated to NIH via the web-app, and your dbGaP authorization has been verified, the Google
identity associated with your account will have access to the controlled-data for 24 hours.

Python Users

I want to write python scripts that access the TCGA data hosted by the ISB-CGC. Do you have some
examples that can get me started? Yes, of course! The best place to start is with our examples-Python [https://github.com/isb-cgc/examples-Python]
repository on github. You can run any of those examples yourself by signing in
to your Google Cloud Project and deploying an instance of Google Cloud Datalab [https://datalab.cloud.google.com/].

R and Bioconductor Users

I want to use R and Bioconductor packages to work with the TCGA data. How can I do that?
You can run RStudio locally or deploy a dockerized version on a Google Compute Engine VM. You can
find some great examples to get you started in our examples-R [https://github.com/isb-cgc/examples-R] repository on github, and also in
the documentation from the Google Genomics workshop [http://googlegenomics.readthedocs.org/en/latest/workshops/bioc-2015.html] at BioConductor 2015.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Support & Other Useful Links

Contact Us

For general information about the ISB-CGC please contact us at info@isb-cgc.org.
We are especially keen on learning about your particular use-cases, and how we can
help you take advantage of the latest in cloud-computing technologies to answer your
research questions.

For feature-requests or bug-reports, please send e-mail to feedback@isb-cgc.org.

Your Own GCP project

To request an ISB-CGC funded Google Cloud Platform (GCP) project, please send a request to request-gcp@isb-cgc.org.
(Note that if you already have a GCP project, and are not requesting funds as part of our
community evaluation phase, you do not need a separate GCP project in order to work with ISB-CGC
hosted data or tools.)

In your request, please describe your research goals in some detail, including information such as the type
of data that you plan to use (whether it is your own data that you plan to upload or
TCGA data currently hosted by the ISB-CGC), the algorithms and/or methods you plan to apply,
and an estimate of the storage and computing costs you expect to incur.
Please let us know if you have students or collaborators who will also be accessing the
same cloud project. Note that if you are working as a team on a single project, you should all
use the same cloud project – if your group is large, we will take this into consideration when
determining your funding level.

If you have previous experience using the Google Cloud Platform, that would be
useful for us to know – including which specific components (eg Compute Engine, BigQuery,
Cloud Datalab, etc).

All reasonable requests will receive an
initial allocation of $300 towards storage and compute costs. We expect that this
amount of funding will be more than enough for you
to become familiar with the platform. If you expect that you will need additional funding
to complete your planned research, this initial amount should be used to perform prototype
analyses and to better estimate your total costs. At that time, you may request additional funding.

Please be aware that we will be monitoring your cloud resource usage on a daily basis and will alert you as you begin
to approach your funding limit. If you exceed your allocation limit and we are not able to contact
you by email for several days, we may need to take action to shut your project down which could cause you to lose work and data.

Other Useful Links

The ISB-CGC platform is built on top of the Google Cloud Platform and has been designed to make
the TCGA data as accessible as possible to a wide
range of users. For the programmatic users, this includes complete access to the tools that Google
is pioneering to allow users to scale-up their analyses on the Google infrastructure using a variety of means.

The ISB-CGC documentation and the example code on github will continue to grown to provide
starting-points and use-cases designed to suit the needs of a variety of end-users. If you
have a particular use-case that has not yet been addressed, please contact us
(email info@isb-cgc.org) and we will work with you to determine the best approach to
run the analysis you have in mind.

Cloud Datalab is a powerful web-based interactive computational environment built on the
familiar IPython (now known as Jupyter) environment, running on a Google VM in your own Google Cloud Project.
Cloud Datalab [https://datalab.cloud.google.com/] allows you to combine
SQL-like queries into the TCGA BigQuery tables with all the power of Python packages like Pandas
and Matplotlib. See our examples-Python [https://github.com/isb-cgc/examples-Python] repository on github.

Google Genomics provides tools for storing, processing, exploring, and sharing DNA sequence
reads, reference-based alignments, and variant calls, using Google’s infrastructure. An extensive
Cookbook [https://googlegenomics.readthedocs.org/en/latest/] here on Read the Docs as well as an ever-growing set of examples on github [https://github.com/googlegenomics] showcase
some of the tools at your disposal. Note that currently, only CCLE data is stored in Google Genomics

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Index

COSMIC in BigQuery hosted by ISB-CGC

[image: ../_images/COSMIC.png]
The COSMIC tables in BigQuery, produced in collaboration with the
Wellcome Trust Sanger Institute [http://www.sanger.ac.uk/], provide
a new way to explore and understand the mutations driving cancer.
The availability of COSMIC in BigQuery enables easy integration of this
resource with other public datasets in BigQuery, including other
open-access datasets made available by the ISB-CGC
(see this [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_BQ.html]
and that [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/Reference-Data.html]
for more details on other publicly accessible BigQuery datasets).

COSMIC Release v81 update: Two new BigQuery datasets now contain all of the tables
available for download from the COSMIC ftp site
(not just the “Mutant” table which was
included for the v80 release). The availability of these additional tables will support
many more types of queries – please explore them at (after registering for access as described below):

	isb-cgc:COSMIC_v81_grch38 [https://bigquery.cloud.google.com/dataset/isb-cgc:COSMIC_v81_grch38]

	isb-cgc:COSMIC_v81_grch37 [https://bigquery.cloud.google.com/dataset/isb-cgc:COSMIC_v81_grch37]

Details about the underlying COSMIC export files used to create these BigQuery tables can be
found in README files for
GRCh38 [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/source/sections/cosmic/README-cosmic-grch38.txt]
and
GRCh37 [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/source/sections/cosmic/README-cosmic-grch37.txt].

Getting Started

Register [https://cancer.sanger.ac.uk/cosmic/register] for access to
COSMIC [https://cancer.sanger.ac.uk/cosmic/about] in BigQuery [https://cloud.google.com/bigquery/what-is-bigquery]:

	if you are already a registered user of COSMIC, you will need to go to your account [https://cancer.sanger.ac.uk/cosmic/myaccount] page and add a valid “Google identity” in the Google ID box: when you are signed in to COSMIC, your name in the upper-right corner is a pull-down menu from which you can access your Account Settings;

	if the Email Address that you initially used when registering for COSMIC is already a valid Google identity, you may simply re-enter the same email address into the Google ID box;

	if you are not sure whether your institutional (or other) email address is a Google identity, you can check by entering it in the Google password-assistance page [https://accounts.google.com/ForgotPasswd]; or by asking your IT staff;

	if you are not currently a registered COSMIC user, you will first need to register [https://cancer.sanger.ac.uk/cosmic/register], agree to the Terms and Conditions, and supply a valid Google identity in the Google ID box;

Once you have completed these steps, ISB-CGC will obtain the Google identity that you provided and you will be given “viewer” access to the COSMIC tables in BigQuery. You will also be added to an exploratory Google Cloud Platform (GCP) project called isb-cgc-cosmic which will allow you to run queries at no cost to you.

A few important notes:

	When you register with COSMIC, you create a password for your COSMIC account – which is associated with whatever email address you provided. This password is your COSMIC password, please avoid reusing any other password.

	If you are not sure what a “Google ID” is, it is the name associated wth a “Google account” – this includes any gmail address. If you do not already have a Google account, you can create one [https://accounts.google.com/SignUp?hl=en].

	If you mistype your Google ID, or enter a string that is not a valid Google ID, you will not be able to access the COSMIC tables in BigQuery. Google IDs are not being automatically verified at this time, so please double-check that the Google ID you provided is correct.

	Avoid using an alias: eg the base account tb@mylab.org might have a longer-form alias like thomas.brown@mylab.org – please enter the ‘base’ name;

Interactive Web-based Exploration

NB: After going through the registration process described above, there will be a short
delay before your Google identity is granted the necessary access to BigQuery and the COSMIC
data resources. If you get an error when running the sample query in this section, please
wait 10-15 minutes and then try again. If you are still not successful, please
verify [https://accounts.google.com/ForgotPasswd]
that the Google ID you have provided is a valid Google account. If you are still not able
to run the sample query given below, please contact us at feedback@isb-cgc.org.

	login [https://accounts.google.com/Login] to your Google account (Chrome [https://www.google.com/chrome/browser/desktop/index.html] is the preferred browser);

	go to the BigQuery web UI [https://bigquery.cloud.google.com] – if you see a welcome screen inviting you to Create a Project then your ISB-CGC registration process is not yet complete;

[image: ../_images/COSMIC-sql-00.png]

	click on the big red COMPOSE QUERY button in the upper left corner;

	click on the Show Options button below the New Query text-box;

	un-check the Use Legacy SQL check-box (the bottom-most “option”);

	click on the Hide Options button;

	paste the sample query below into the New Query text-box;

	within a second or two you should see a green circle with a check-mark below the lower-right-corner of the New Query text-box – if instead you see a red circle with an exclamation mark, click on it to see what your Syntax Error is;

	once you do have the green circle, you can click on it to see a message like: “Valid: This query will process 131 MB when run.”

	to execute the query, click on RUN QUERY !

WITH
 mutCounts AS (
 SELECT
 COUNT(DISTINCT(ID_tumour)) AS CaseCount,
 Mutation_AA,
 Gene_name
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 GROUP BY
 Mutation_AA,
 Gene_name),
 mutRatios AS (
 SELECT
 Mutation_AA,
 Gene_name,
 CaseCount,
 (CaseCount/SUM(CaseCount) OVER (PARTITION BY Gene_name)) AS ratio
 FROM
 mutCounts)
SELECT
 *
FROM
 mutRatios
WHERE
 CaseCount>=1000
 AND ratio>=0.10
 AND NOT (Mutation_AA LIKE "%?%")
ORDER BY
 Gene_name,
 ratio DESC

About the COSMIC BigQuery Tables

The COSMIC BigQuery tables are based on the “CosmicMutantExport” files downloaded from the
Sanger ftp site [http://cancer.sanger.ac.uk/cosmic/download].
This file is a tab-separated table containing all COSMIC point mutations
from targeted and genome-wide screens. The ISB-CGC
COSMIC dataset [https://bigquery.cloud.google.com/dataset/isb-cgc:COSMIC]
in BigQuery currently
includes the latest COSMIC release (v80) as well as the previous release (v79) for both
GRCh37 and GRCh38.

BigQuery Usage Costs

More details about BigQuery costs can be found in the Google
documentation [https://cloud.google.com/bigquery/pricing].
There are two basic types of costs: storage costs and usage costs. ISB-CGC is hosting
these COSMIC tables in BigQuery and is paying for the storage costs (with support from NCI).
The size of each COSMIC table is less than 1.5 GB and therefore costs less than $0.25 per year to store.

The main costs associated with using BigQuery are the query costs. BigQuery is a
cloud-based massively parallel analytic engine which can scan terabytes of data in seconds.
Query costs start at $5 (USD) per TB of data scanned, but can be higher for more
computationally intensive queries (eg those that include complex user-defined-functions).

For the sample query above, we saw that clicking on the check-mark in the green circle
produced this message: Valid: This query will process 131 MB when run.
The cost of this specific query can be estimated using this information:
($5/TB) x (131 MB / (1000000 MB/TB)) = $0.000655. This cost is very (perhaps suprisingly) low,
but it is always important to think carefully about your queries and to make them as
efficient as possible. If you want to derive summary information about all ~20,000 genes,
for example, you could do that with a single query that might cost a few pennies, or
you might write a less-clever query that returns information only about a single gene
and then programmatically loop over all genes, running that single-gene query 20,000 times.
Your overall query costs using this less-clever approach, instead of being a few pennies
would be several hundred dollars! This latter approach would also take significantly more time.

As your queries become more complex and you begin to join in other resources such as the
ISB-CGC genomic-reference [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/Reference-Data.html]
or
molecular-data [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_BQ.html]
tables, the amount of data processed by a
single query may increase into the GB or even TB range.

During this introductory period (for at least the next 6 months), all registered COSMIC
users will be added to the isb-cgc-cosmic Google Cloud Platform (GCP) project so that
they will be able to perform exploratory queries at no cost.
(These costs will be paid by ISB-CGC, again with funding from NCI.) Please note that
users who perform large numbers of queries and incur significant costs will be
removed from the isb-cgc-cosmic GCP project and will be required to create their own
GCP projects prior to performing additional queries. If you want to be able to
upload your own data to BigQuery or save the results of your queries as new BigQuery tables,
you will need to have your own GCP project. (All new GCP users are welcome
to take advantage of the Google free trial [https://cloud.google.com/free/]
which includes up to $300 in funding to be used over a period of one year.)

Additional Public BigQuery Datasets

There are many public BigQuery datasets containing genomic information, and you
can combine any of these resources into your SQL queries on the COSMIC tables –
all you need is the name of the table.

In the example query above, the table being queried is isb-cgc.COSMIC.grch37_v80;
a complete BigQuery table name has three components:

	the first part of the name (isb-cgc) is the Google Cloud Platform (GCP) project name;

	the second part (COSMIC) is the dataset name; and

	the third part (grch37_v80) is the table name.

To add public BigQuery datasets and tables to your “view” in the BigQuery web UI you
need to know the name of the GCP project that owns the dataset(s).
To add the publicly accessible ISB-CGC datasets (project name: isb-cgc)
follow these steps [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/bigqueryGUI/LinkingBigQueryToIsb-cgcProject.html].

You should now be able to see and explore all of the ISB-CGC public datasets, including
the COSMIC dataset, if you are a registered COSMIC user. Clicking on the blue triangle
next to a dataset name will open it and show the list of tables in the dataset. Clicking
on a table name will open up information about the table in main panel, where you can
view the Schema, Details, or a Preview of the table.

Additional projects with public BigQuery datasets which you may want to explore (repeating
the same process will add these to your BigQuery side-panel) include genomics-public-data and
google.com:biggene.

Additional BigQuery Documentation

The main Google BigQuery documentation can be found here [https://cloud.google.com/bigquery/docs/].

Legacy SQL vs Standard SQL

BigQuery introduced support for
Standard SQL [https://cloud.google.com/bigquery/docs/reference/standard-sql/]
in 2016. The previous version of SQL supported by
BigQuery is now known as
Legacy SQL [https://cloud.google.com/bigquery/docs/reference/legacy-sql].
Note that when you first go to the BigQuery web UI,
Legacy SQL will be activated by default and you will need to enable Standard SQL if you want to
use Standard SQL. For simple queries, the same syntax will work in both, except for one
important detail which is how you specify the table name. A simple Standard SQL query might look like:

SELECT *
 FROM `isb-cgc.COSMIC.grch37_v80`
 LIMIT 1000

whereas the same query in Legacy SQL requires square brackets around the table name and a colon
between the project name and the dataset name, like this:

SELECT *
 FROM [isb-cgc:COSMIC.grch37_v80]
 LIMIT 1000

SQL functions

Standard SQL includes a large variety of built-in
functions and operators [https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators]
including logical and statistical aggregate functions, and mathematical functions, just to name a few.
User-defined functions [https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions] (UDFs)
are also supported and can be used to further extend the types of analyses possible in BigQuery.

Using the bq Command Line Tool

The bq command line tool is part of the
cloud SDK [https://cloud.google.com/sdk/] and can be used to interact directly
with BigQuery from the command line. The cloud SDK is easy to install and
is available for most operating systems. You can use bq to create and upload
your own tables into BigQuery (if you have your own GCP project),
and you can run queries at the command-line like this:

bq query --allow_large_results \
 --destination_table="myproj:dataset:query_output" \
 --nouse_legacy_sql \
 --nodry_run \
 "$(cat myQuery.sql)"

(where myQuery.sql is a plain-text file containing the SQL, and the destination
table is in an existing BigQuery dataset in your project).

Using BigQuery from R

BigQuery can be accessed from R using one of two powerful R packages:
bigrquery [https://cran.r-project.org/web/packages/bigrquery/] and
dplyr [https://cran.r-project.org/web/packages/dplyr/].
Please refer to the documentation provided with these packages for more information.

Using BigQuery from Python

BigQuery
client libraries [https://cloud.google.com/bigquery/docs/reference/libraries#client-libraries-install-python]
are available that let you interact with BigQuery from Python or other languages.
In addition, the experimental
pandas.io.gbq [http://pandas.pydata.org/pandas-docs/stable/io.html#google-bigquery-experimental]
module provides a wrapper for BigQuery.

Getting Help

Aside from the documentation, the best place to look for help using BigQuery and tips
and tricks with SQL is
StackOverflow [http://stackoverflow.com/]. If you tag your question with google-bigquery
your question will quickly get the attention of Google BigQuery experts. You may also find
that your question has already been asked and answered among the nearly 10,000 questions
that have already been asked about BigQuery on StackOverflow.

More SQL Examples

Let’s start with a few simple examples to get some practice using BigQuery, and to
explore some of the available fields in these COSMIC tables.

[image: ../_images/COSMIC-sql-01.png]
Note that all of these examples are in “Standard SQL”, so make sure that you have that enabled.
(See instructions above regarding un-checking the “Legacy SQL” box in the BigQuery web UI.)

1. How many mutations have been observed in KRAS?

SELECT
 COUNT(DISTINCT(ID_sample)) AS numSamples,
 COUNT(DISTINCT(ID_tumour)) AS numTumours
FROM
 `isb-cgc.COSMIC.grch37_v80`
WHERE
 Gene_name="KRAS"

You can simply copy-and-paste any of the SQL queries on this page into the
BigQuery web UI [https://bigquery.cloud.google.com] . The screen-shot
shown here shows the query in the “New Query” box, and the results
down below. Just click on the “RUN QUERY” button to run the query.
Notice the green check-mark indicating that the query looks good.

2. What other information is available about these KRAS mutant tumours?

In addition to answering the question above,
this next query also illustrates usage of the WITH construct to create an intermediate
table on the fly, and then use it in a follow-up SELECT:

WITH
 t1 AS (
 SELECT
 ID_tumour,
 Primary_site,
 Primary_histology,
 Mutation_AA,
 Mutation_Description,
 FATHMM_prediction,
 Sample_source
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 WHERE
 Gene_name="KRAS"
 GROUP BY
 ID_tumour,
 Primary_site,
 Primary_histology,
 Mutation_AA,
 Mutation_Description,
 FATHMM_prediction,
 Sample_source)
SELECT
 COUNT(*) AS n,
 Primary_site,
 Primary_histology,
 Mutation_AA,
 Mutation_Description,
 FATHMM_prediction,
 Sample_source
FROM
 t1
GROUP BY
 Primary_site,
 Primary_histology,
 Mutation_AA,
 Mutation_Description,
 FATHMM_prediction,
 Sample_source
ORDER BY
 n DESC

3. What are the most frequently observed mutations and how often do they occur?

WITH
 t1 AS (
 SELECT
 ID_tumour,
 Gene_name,
 Mutation_AA,
 Mutation_Description
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 GROUP BY
 ID_tumour,
 Gene_name,
 Mutation_AA,
 Mutation_Description)
SELECT
 COUNT(*) AS n,
 Gene_name,
 Mutation_AA,
 Mutation_Description
FROM
 t1
GROUP BY
 Gene_name,
 Mutation_AA,
 Mutation_Description
HAVING
 n >=1000
ORDER BY
 n DESC

4. Joining COSMIC to Kaviar and Ensembl – all in BigQuery!

Now let’s try something a bit more complicated! We’re going to query the COSMIC database
and then join the intermediate results with the
Kaviar [http://db.systemsbiology.net/kaviar/] table and the
Ensembl [http://grch37.ensembl.org/Homo_sapiens/Info/Index] gene-set.
(Note that since
most of the available TCGA data is based on GRCH37/hg19, we’re still frequently using
those older reference sources, but newer gene-sets are also available in the ISB-CGC
genome_reference dataset [https://bigquery.cloud.google.com/dataset/isb-cgc:genome_reference]
in BigQuery.

Kaviar [http://db.systemsbiology.net/kaviar/] is a large database
of known variants which is also
available [https://bigquery.cloud.google.com/table/isb-cgc:genome_reference.Kaviar_160204_Public_hg19]
in BigQuery, hosted by the ISB-CGC.
In the complex query below, we will extract a subset of commonly observed
mutations in cancer from COSMIC and then see how many of them have also
been observed in “normal” genomes
(Kaviar excludes cancer genomes but includes some data from cell lines
and individuals affected by disease.)

WITH
 --
 -- *COSMIC_t1*
 -- Our first subquery intermediate table extracts just the sample-name, nucleotide-change
 -- and genomic coordinates from the COSMIC table for all single-nucleotide mutations.
 -- The resulting intermediate table contains ~3.7M rows
 COSMIC_t1 AS (SELECT
 -- some of the TCGA identifiers are 12-characters long and some 15 -- this CASE statement
 -- just strips off the additional 3 characters from the longer identifiers
 (CASE
 WHEN (Sample_name LIKE 'TCGA-%' AND CHAR_LENGTH(Sample_name)>12) THEN SUBSTR(Sample_name,1,12)
 ELSE Sample_name END) AS Sample_name,
 -- here we split off just the nucleotide-change, eg "G>T"
 SUBSTR(Mutation_CDS,-3,3) AS COSMIC_nucChange,
 -- here we're splitting up the genomic coordinate into it's three component parts:
 SPLIT(Mutation_genome_position,':')[OFFSET(0)] AS chr,
 CAST(SPLIT(SPLIT(Mutation_genome_position,':')[OFFSET(1)],'-')[OFFSET(0)] AS INT64) AS startPos,
 CAST(SPLIT(SPLIT(Mutation_genome_position,':')[OFFSET(1)],'-')[OFFSET(1)] AS INT64) AS endPos
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 WHERE
 Mutation_genome_position IS NOT NULL
 AND GRCh=37
 AND SUBSTR(Mutation_CDS,-2,1)='>'
 GROUP BY
 Sample_name,
 Mutation_CDS,
 Mutation_genome_position),
 --
 -- *COSMIC_t2*
 -- Next, we want to count up how frequently these mutations have been observed, and keep
 -- only those mutations that are observed in at least 100 samples in COSMIC: this brings
 -- our number of "interesting" mutations down to just 167, with caseCounts ranging from
 -- over 40,000 down to 100.
 COSMIC_t2 AS (
 SELECT
 COUNT(*) AS caseCounts,
 COSMIC_nucChange,
 chr,
 startPos,
 endPos
 FROM
 COSMIC_t1
 GROUP BY
 COSMIC_nucChange,
 chr,
 startPos,
 endPos
 HAVING
 caseCounts>=100),
 --
 -- *fromKaviar*
 -- Now we want to bring the Kaviar database into our analysis: we're going to extract most of the
 -- columns from the Kaviar table, while adjusting the 0-based coordinates and keeping only the
 -- single-nucleotide variants that were seen at least 10 times.
 -- The resulting intermediate table has ~33.5M rows.
 fromKaviar AS (
 SELECT
 reference_name AS chr,
 (start_pos+1) AS startPos,
 (end_pos+0) AS endPos,
 reference_bases,
 alternate_bases,
 MAX(AC) AS AC,
 MAX(AF) AS AF,
 MAX(AN) AS AN
 FROM
 `isb-cgc.genome_reference.Kaviar_160204_Public_hg19`
 WHERE
 (end_pos-start_pos)=1
 AND CHAR_LENGTH(reference_bases)=1
 AND CHAR_LENGTH(alternate_bases)=1
 GROUP BY
 reference_name,
 start_pos,
 end_pos,
 reference_bases,
 alternate_bases
 HAVING
 AC>=10),
 --
 -- *join1*
 -- Now we're going to join the table of frequent COSMIC variants to the intermediate Kaviar table,
 -- requring that the genomic coordinates and the nucleotides match.
 join1 AS (
 SELECT
 c.caseCounts AS caseCounts,
 c.COSMIC_nucChange AS nucChange,
 c.chr AS chr,
 c.startPos AS startPos,
 c.endPos AS endPos,
 k.AC AS Kaviar_AC,
 k.AF AS Kaviar_AF,
 k.AN AS Kaviar_AN
 FROM
 COSMIC_t2 c
 JOIN
 fromKaviar k
 ON
 c.chr=k.chr
 AND c.startPos=k.startPos
 AND c.endPos=k.endPos
 -- just in case the reference and the alternate have been swapped,
 -- we check for both kinds of matches:
 AND ((reference_bases=SUBSTR(c.COSMIC_nucChange,1,1)
 AND alternate_bases=SUBSTR(c.COSMIC_nucChange,3,1))
 OR (reference_bases=SUBSTR(c.COSMIC_nucChange,3,1)
 AND alternate_bases=SUBSTR(c.COSMIC_nucChange,1,1)))),
 --
 -- *Ensembl*
 -- Before we finish, we want to also pull in some information from Ensembl,
 -- so we're going to select a few columns from the Ensembl_GRCh37_75 table
 -- (also publicly available in BigQuery). This subquery will create a
 -- table with information about ~132k exons:
 Ensembl AS (
 SELECT
 gene_name,
 exon_id,
 seq_name,
 start,
 `end`
 FROM
 `isb-cgc.genome_reference.Ensembl_GRCh37_75`
 WHERE
 exon_number IS NOT NULL
 AND feature="exon"
 AND transcript_source="ensembl"
 GROUP BY
 gene_name,
 exon_id,
 seq_name,
 start,
 `end`)
 --
 -- In our final step, we will join the results of the earlier join with the
 -- Ensembl reference information obtained above.
 -- We're down to just a handful of mutations which, for the most part occur
 -- frequently in COSMIC and quite rarely in Kaviar.
SELECT
 caseCounts,
 nucChange,
 chr,
 startPos AS pos,
 Kaviar_AC,
 Kaviar_AF,
 Kaviar_AN,
 gene_name,
 exon_id
FROM
 join1 j
JOIN
 Ensembl r
ON
 j.chr=r.seq_name
 AND r.start<=j.startPos
 AND r.`end`>=j.endPos
ORDER BY
 caseCounts DESC,
 Kaviar_AF DESC

Our final result includes only 8 mutations that are found relatively frequently
in COSMIC and are also found (though generally rarely) in Kaviar. Notice the
frequently-mutated gene
PRSS3 [http://grch37-cancer.sanger.ac.uk/cosmic/gene/analysis?ln=PRSS3]
(which encodes a member of the trypsin family of serine proteases),
and the major histocompatibility gene
HLA-A [http://grch37-cancer.sanger.ac.uk/cosmic/gene/analysis?ln=HLA-A].

[image: ../_images/COSMIC-Kaviar-sql-01.png]
You can also click on the “Explanation” button to see diagnostic information about
the completed query’s execution plan. This feature is similar to the EXPLAIN
statement available in some other query engines. You can often use this information
to improve query performance.

[image: ../_images/COSMIC-Kaviar-sql-02.png]

Stay-tuned, more examples coming soon!

If you have a specific use-case that you need help with, feel free to contact us!

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Getting started with R and RStudio

Step #1: Installing R and RStudio

Basic Information

Working in R [https://cran.r-project.org/] is a great way to access the cloud pilot data. We can perform Big Queries,
statistically model data, and easily visualize the results. R programming
is easier and more robust then ever before.

Installation

RStudio is a freely available development environment that makes working
in R more intuitive. Always install (and update to) the most recent versions.

	First, we need to download and install R. Download and install R [https://cran.rstudio.com/].

	Next, we download and install RStudio. RStudio [https://www.rstudio.com/products/rstudio/download/].

Questions?

Let us know if you’re having trouble! We’re here to help.

Step #2: How to prepare for the workshop

There’s a few R libraries we need to install for the workshop. To do that,
start up RStudio, and click over to the “Console” window containing the
interactive R prompt. The window should be in the lower left corner.

Necessary:

Install devtools [https://cran.r-project.org/web/packages/devtools/index.html]:

install.packages("devtools")

Install bigrquery [https://cran.r-project.org/web/packages/bigrquery/index.html].:

install.packages("bigrquery")

Install httr [https://cran.r-project.org/web/packages/httr/index.html].:

install.packages("httr")

Install ISBCGCExamples [https://github.com/isb-cgc/examples-R].

library(devtools)
install_github("isb-cgc/examples-R", build_vignettes=TRUE)

To view and run the ISB-CGC R vignettes.:

help(package="ISBCGCExamples")

Strongly Recommended:

Install ggplot2 [https://cran.r-project.org/web/packages/ggplot2/index.html]:

install.packages("ggplot2")

There are vignettes for each TCGA data type, and more elaborate examples involving analyzing genomic data,
correlating gene expression and methylation, and correlating protein and mRNA levels.

The vignettes as R-markdown can be found in the examples-R/inst/doc directory, which can serve as examples of using builtin BigQuery functions like Pearson correlation,
or even how to implement more complex functions like Spearmans correlation. Queries can be simple character vectors, or standalone files.

Results are returned as data.frames using the bigrquery package to interact with the servers.
The SQL files used in the vignettes can be found at examples-R/inst/sql. These are parsed and dispatched with arguments using the DisplayAndDispatchQuery function,
found in the file of the same name in examples-R/R.

Additional Resources:

ISB-CGC documentation [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/index.html]

What’s Next?

Check out our github repo containing introductions to data types and ideas
for different analysis.

https://github.com/isb-cgc/examples-R

	Analysis with R

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Query of the Month Club

Welcome to the ‘Query of the Month Club’ where we’ll be creating a collection
of new and interesting queries to demonstrate the powerful combination of
BigData from the TCGA and BigQuery from Google.

Please let us know if you’d like to be featured on the “query-club”!
email: dgibbs (at) systemsbiology (dot) org

May, 2017

This month we are going to extend the query from April and focus on estimating the
distance between samples based on shared mutations in pathways. To clarify, we want to know, given
a particular pathway, such as the WNT signaling pathway, whether two samples
share deleterious mutations within that pathway. In April, we were comparing samples
based on shared mutations, but in considering all genes simultaneously, we had
some pretty low Jaccard indices.

A second goal will be to create a set of pathways, for each sample, where pathways
contain at least one potentially harmful mutation. Then we will again estimate the
distance between samples based on the set of (potentially) altered pathways.

New for this month, we also have a whole host of new BigQuery tables from
COSMIC [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/COSMIC.html].

For our query this month, we downloaded 381 pathways from
WikiPathways [http://data.wikipathways.org/current/gmt/wikipathways-20170410-gmt-Homo_sapiens.gmt].
In the BQ table, each row contains a pathway and a gene associated with that pathway.

For this portion of the work, I wrote a small python script to parse .gmt files to
output a ‘tidy’ (format), which is required for
uploading to BigQuery. Then with this file, I used the BQ web interface uploader.
To upload a table, clicking the ‘+’ symbol next to a dataset
reveals the ‘Create Table’ interface. For smaller files, we can upload it directly,
whereas with larger files, we need to move it to cloud storage first. After giving it a table
name, and with some luck, we can just click the ‘Automatically detect’ schema check box.
I’ve been having good luck with it, but you might run into trouble if the ‘top’ of a column
looks like an integer, but the actual type is a ‘string’.

I’ve created a table with a column listing the pathway name, and a second
column listing the genes associated with the pathway. I used the org.Hs.eg.db
human database of gene identifiers found in Bioconductor to map the gene IDs to a few often
used variants.

For this analysis, first I will select a few pathways that are well known and often important in cancer
processes, then we’ll move to using all pathways. And towards the end, we’ll look at all pathways and all
studies!

SELECT
 Symbol
FROM
 `isb-cgc:QotM.WikiPathways_20170425_Annotated`
WHERE
 pathway = 'Notch Signaling Pathway'
GROUP BY
 Symbol

The above query returns 79 gene symbols. Let’s see how many variants are found
in this pathway.

WITH
 pathGenes AS (
 SELECT
 Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 WHERE
 pathway = 'Notch Signaling Pathway'
 GROUP BY
 Symbol
),
 varsMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND SWISSPROT IS NOT NULL
 AND REGEXP_CONTAINS(PolyPhen, 'damaging')
 AND REGEXP_CONTAINS(SIFT, 'deleterious')
 AND Hugo_Symbol IN (select Symbol as Hugo_Symbol from pathGenes)
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol
)
--
--
SELECT
 project_short_name,
 COUNT(*) AS N_vars
FROM
 varsMC3
GROUP BY
 project_short_name
ORDER BY
 N_vars DESC

[image: ../_images/may_1.png]

So there are quite a few variants found in this pathway.
Let’s find out a little more information about them.
I’m going to replace the last ‘select’ statement of the above query
to look at the returned rows. Also, similar to last month,
we’re going to look at a small subset of cancer types to ensure the queries come back quickly.

SELECT
 Hugo_Symbol,
 count(Hugo_Symbol) as gene_count
FROM
 varsMC3
WHERE
 project_short_name = 'TCGA-COAD'
group by
 Hugo_Symbol
order by
 gene_count dESC

[image: ../_images/may_2_2.png]

These counts show that some genes are mutated more often
than others. In COAD, FBXW7 is mutated more than twice as often as the next
most mutated gene, NOTCH1. Both of these genes are well known among cancer
researchers.

OK, let’s compute a Jaccard index based on this pathway!

WITH
 --
 -- First we define our pathway of interest.
 --
 pathGenes AS (
 SELECT
 Symbol as Hugo_Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 WHERE
 pathway = 'Notch Signaling Pathway'
 GROUP BY
 Symbol
),
 --
 -- Then we're going to extract just the project names, cases, and gene symbols,
 -- using the "GROUP BY" to make sure we only count one mutation per gene per case
 -- and we'll just take genes that are in the pathway.
 --
 firstVars AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Hugo_Symbol IN (select Hugo_Symbol from pathGenes)
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND project_short_name IN ('TCGA-PAAD', 'TCGA-GBM', 'TCGA-LGG')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol),
 --
 -- Next we transform resulting table using the ARRAY_AGG function
 -- to create a list of mutated genes for each case
 --
 arrayMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 firstVars
 GROUP BY
 project_short_name,
 case_barcode),
 --
 -- Now we can do some "set operations" on these gene-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 --
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 ARRAY_LENGTH(a.geneArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.geneArray) AS length2,
 --
 -- here's the intersection
 (SELECT
 COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb)
 AS gene_intersection,
 --
 -- and here's the union
 (SELECT
 COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx)
 AS gene_union
 FROM
 arrayMC3 AS a
 JOIN
 arrayMC3 AS b
 ON
 a.case_barcode < b.case_barcode)
 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 case1,
 study1,
 length1 AS geneCount1,
 case2,
 study2,
 length2 AS geneCount2,
 gene_intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.1
 AND gene_intersection > 5
ORDER BY
 jaccard_index DESC

[image: ../_images/may_3.png]

So, it’s very interesting that we are getting samples from GBM (brain) and PAAD
(pancreas) with high overlaps in the gene sets. But it makes sense since the
Notch signaling pathway was been implciated in both of these cancer types.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283135/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621772/

Now we’ll move on to the COSMIC data, where we will compare a GBM sample
to various non-TCGA samples in COSMIC.

WITH
 --
 -- First we define our pathway of interest.
 --
 pathGenes AS (
 SELECT
 Symbol as Hugo_Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 WHERE
 pathway = 'Notch Signaling Pathway'
 GROUP BY
 Symbol
),
 --
 -- Then we'll select a single TCGA sample, with filters similar to the above.
 --
 tcgaSample AS (
 SELECT
 sample_barcode_tumor,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 sample_barcode_tumor = 'TCGA-06-5416-01A'
 AND Hugo_Symbol IN (select Hugo_Symbol from pathGenes)
 AND Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 GROUP BY
 sample_barcode_tumor,
 Hugo_Symbol),
 --
 -- Then we'll create a sub-table of COSMIC samples, sans TCGA.
 --
 cosmicSample AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 WHERE
 STARTS_WITH(Sample_name, "TCGA") = FALSE
 AND Mutation_Description = 'Substitution - Missense'
 AND FATHMM_prediction = "PATHOGENIC"
 AND Gene_name IN (select Hugo_symbol from pathGenes)
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name),
 --
 -- Then we make the array of genes for the TCGA sample.
 --
 tcgaSampleArray AS (
 SELECT
 sample_barcode_tumor,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 tcgaSample
 GROUP BY
 sample_barcode_tumor),
 --
 -- Then we make the array of genes for each cosmic sample.
 --
 cosmicSampleArray AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 ARRAY_AGG(DISTINCT Gene_name) AS geneArray
 FROM
 cosmicSample
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source),
 --
 -- Next we can perform our set operations on the arrays.
 --
 setOpsTable AS (
 SELECT
 a.sample_barcode_tumor AS tcgaSample,
 b.Sample_name AS cosmicSample,
 b.Primary_site,
 b.Primary_histology,
 b.Sample_source,
 ARRAY_LENGTH(a.geneArray) AS length1,
 ARRAY_LENGTH(b.geneArray) AS length2,
 (SELECT COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb) AS gene_intersection,
 (SELECT COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx) AS gene_union
 FROM
 tcgaSampleArray AS a
 JOIN
 cosmicSampleArray AS b
 ON
 a.sample_barcode_tumor < b.Sample_name)
 --
 -- And build our final results.
 --
SELECT
 tcgaSample,
 length1 AS geneCount1,
 cosmicSample,
 Primary_site,
 Primary_histology,
 length2 AS geneCount2,
 gene_intersection AS intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.00
 AND gene_intersection > 1
 AND gene_union > 1
ORDER BY
 jaccard_index DESC

[image: ../_images/may_cosmic_1.png]

So, for this particular pathway, the Jaccard indices are not spectacular.
But(!), what we really want is to look at all pathways simultaneously.
Then for any given pair of samples, we could rank the mutation overlap by pathway.
To do that, instead of selecting a pathway in the first subtable… we build a
table containing all pathways, and join on that further down in the query.

Just note, this is a longer running query (takes about 2 minutes).

WITH
 --
 -- First we make a table with pathways and genes.
 --
 pathGenes AS (
 SELECT
 pathway,
 Symbol as Hugo_Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 GROUP BY
 Symbol,
 pathway
),
 --
 -- Then we're going to extract just the project names, cases, and gene symbols,
 -- using the "GROUP BY" to make sure we only count one mutation per gene per case
 -- and we'll join to the above pathway table.
 --
 firstVars AS (
 SELECT
 a.project_short_name,
 a.case_barcode,
 a.Hugo_Symbol,
 b.pathway
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3` as a
 join
 pathGenes as b
 on
 a.Hugo_Symbol = b.Hugo_Symbol
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND project_short_name IN ('TCGA-PAAD', 'TCGA-GBM', 'TCGA-LGG', 'TCGA-BRCA', 'TCGA-KIRC')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol,
 pathway
),
 --
 -- Next we transform resulting table using the ARRAY_AGG function
 -- to create a list of mutated genes for each case
 --
 arrayMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 pathway,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 firstVars
 GROUP BY
 project_short_name,
 case_barcode,
 pathway
),
 --
 -- Now we can do some "set operations" on these gene-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 --
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 a.pathway as pathway,
 ARRAY_LENGTH(a.geneArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.geneArray) AS length2,
 --
 -- here's the intersection
 (SELECT
 COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb)
 AS gene_intersection,
 --
 -- and here's the union
 (SELECT
 COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx)
 AS gene_union
 FROM
 arrayMC3 AS a
 JOIN
 arrayMC3 AS b
 ON
 a.case_barcode < b.case_barcode AND
 a.pathway = b.pathway
)
 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 pathway,
 case1,
 study1,
 length1 AS geneCount1,
 case2,
 study2,
 length2 AS geneCount2,
 gene_intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.3
 AND gene_intersection > 10
ORDER BY
 jaccard_index DESC

[image: ../_images/may_5.png]

OK! Now we’ve got some pretty decent overlaps. We now have a way to search for
similarities among groups of samples based on functionally based shared mutation
profiles.

Turning this question around a little bit,
what if we looked at the overlap on the pathway level instead?

WITH
 --
 -- First we'll join the filtered somatic mutation table to the
 -- table of pathways.
 --
 vars AS (
 SELECT
 mc3.project_short_name,
 mc3.case_barcode,
 mc3.Hugo_Symbol,
 wikip.pathway
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3` as mc3
 join
 `isb-cgc.QotM.WikiPathways_20170425_Annotated` as wikip
 ON
 mc3.Hugo_Symbol = wikip.Symbol
 WHERE
 mc3.Variant_Type = 'SNP'
 AND mc3.Consequence = 'missense_variant'
 AND mc3.biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(mc3.PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(mc3.SIFT, 'deleterious'))
 AND mc3.project_short_name IN ('TCGA-BRCA', 'TCGA-GBM')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 mc3.project_short_name,
 mc3.case_barcode,
 mc3.Hugo_Symbol,
 wikip.pathway),
 --
 -- Next we transform resulting table using the ARRAY_AGG function
 -- to create a list of pathways for each case, where each pathway
 -- contains at least one mutated gene.
 --
 arrayPath AS (
 SELECT
 project_short_name,
 case_barcode,
 ARRAY_AGG(DISTINCT pathway) AS pathArray
 FROM
 vars
 GROUP BY
 project_short_name,
 case_barcode),

 --
 -- Now we can do some "set operations" on these pathway-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 --
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 ARRAY_LENGTH(a.pathArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.pathArray) AS length2,
 --
 -- here's the intersection
 (SELECT
 COUNT(1) FROM
 UNNEST(a.pathArray) AS ga JOIN UNNEST(b.pathArray) AS gb ON ga = gb)
 AS path_intersection,
 --
 -- and here's the union
 (SELECT
 COUNT(DISTINCT gx) FROM
 UNNEST(ARRAY_CONCAT(a.pathArray,b.pathArray)) AS gx)
 AS path_union
 FROM
 arrayPath AS a
 JOIN
 arrayPath AS b
 ON
 a.case_barcode < b.case_barcode)
 --

 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 case1,
 study1,
 length1 AS pathCount1,
 case2,
 study2,
 length2 AS pathCount2,
 path_intersection,
 path_union,
 (path_intersection / path_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (path_intersection / path_union) > 0.8
 AND path_intersection > 10
ORDER BY
 jaccard_index DESC

[image: ../_images/may_brca_pathway_jaccard.png]

[image: ../_images/may_brca_pathways_jaccard_2.png]

Wow, those are some excellent jaccard indices! Considering that we started
with just over 300 pathways, we have samples perfectly or nearly perfectly
in agreement.

Next, let’s see how the samples are associating on a tissue level. I’m going to add
this query to the end of the above query, to tabulate how often study1 and study2
agree regarding tissue of origin (between BRCA and GBM).

SELECT
 table_cell,
 COUNT(*) AS n
FROM (
 SELECT (
 CASE
 WHEN study1 = 'TCGA-BRCA' AND study2 = 'TCGA-BRCA' THEN 'BRCA-BRCA'
 WHEN study1 = 'TCGA-BRCA' AND study2 = 'TCGA-GBM' THEN 'BRCA-GBM'
 WHEN study1 = 'TCGA-GBM' AND study2 = 'TCGA-BRCA' THEN 'GBM-BRCA'
 WHEN study1 = 'TCGA-GBM' AND study2 = 'TCGA-GBM' THEN 'GBM-GBM'
 ELSE 'None'
 END) AS table_cell
 FROM
 jtable)
GROUP BY
 table_cell
ORDER BY
 n DESC

[image: ../_images/may_brca_jaccard_table.png]

So, we see that the really high Jaccard indices are coming (mostly) from
BRCA-BRCA sample comparisons.

With one additional change to the above query we can query across all TCGA studies
rather than just a few. The change involves removing the
mc3.project_short_name IN ('TCGA-BRCA', 'TCGA-GBM') conditional. This is a
good trick that works in many cases. By removing the conditional, instead of
querying on just a few, we query across all studies, letting each sample be
paired with every other. Doing this, and setting the Jaccard index threshold
to 0.5, we get > 800K rows of results back, where each sample pair is
compared on the similarity of their potentially disrupted pathways. Bringing
the results into R, I created a heatmap showing how many TCGA study pairs were
among the results. We see some tissue types are most similar to only that type
of tissue, whereas other tissue types share patterns of disrupted pathways.

[image: ../_images/all_tcga_jaccard_by_pathways_log_counts.png]

April, 2017

In this month’s query, we are going to look at two new data sources. The first
is the MC3 somatic mutation table, and the second is the
COSMIC mutation database [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/COSMIC.html].
The objective is to compute a similarity metric based on
overlapping mutations between samples. First we’ll look at pairwise similarity
among TCGA samples, and then we’ll pick a single TCGA sample and search for a
matching COSMIC sample.

The MC3 table comes from the TCGA Pan-Cancer effort, a multi-center project aiming
to analyze all 33 TCGA tumor-types together. This somatic mutation calls table is
based on the unified call set recently published by the TCGA Network.
(For more details or the original source file, please
check Synapse [https://www.synapse.org/#!Synapse:syn7214402/wiki/405297].)

The COSMIC
(Catalogue Of Somatic Mutations In Cancer [http://cancer.sanger.ac.uk/cosmic])
data comes from the Wellcome Trust Sanger Institue and represents the
“the world’s largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer”.

To compute a similarity score between any two samples, we’ll use the
Jaccard index, in which the intersection is divided by the union, so that
samples with no overlap in mutations will have a Jaccard index of 0, while
samples with some overlap will have a Jaccard index between 0 and 1.

We’ll start with the MC3 table – which includes the predicted effect
of each mutation call. The mutation might result in a
change in the amino acid sequence (non-synonomous), or introduce a new stop
codon (stop insert), or no amino-acid change (synonomous). In this work
we’re going to focus on single nucleotide polymorphisms (SNPs).

First, lets see what kind of “consequences” are present in this table:

SELECT
 Consequence,
 count (1) AS n
FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
WHERE
 Variant_Type = 'SNP'
GROUP BY
 Consequence
ORDER BY
 n DESC

	Row

	Consequence

	n

	1

	missense_variant

	1921705

	2

	synonymous_variant

	781564

	3

	3_prime_UTR_variant

	253582

	4

	stop_gained

	156768

	5

	intron_variant

	86347

	6

	5_prime_UTR_variant

	77069

	7

	non_coding_transcript_exon_variant

	46761

	8

	splice_acceptor_variant

	29658

	9

	downstream_gene_variant

	19048

	10

	splice_donor_variant

	18239

	11

	splice_region_variant

	15231

	12

	upstream_gene_variant

	14990

	13

	start_lost

	2718

	14

	stop_lost

	2038

	15

	stop_retained_variant

	1077

For the sake of simplicity, we’re going to focus on the most common type of
variant, the missense_variant which is more likely to have a functional impact
through an alteration of the amino acid sequence.

Another question we might ask is: how are variants distributed across the
tumor types (aka “studies” or “projects” within TCGA).

WITH
 firstMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND SWISSPROT IS NOT NULL
 AND REGEXP_CONTAINS(PolyPhen, 'damaging')
 AND REGEXP_CONTAINS(SIFT, 'deleterious')
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol)
--
--
SELECT
 project_short_name,
 COUNT(*) AS N_genes
FROM
 firstMC3
GROUP BY
 project_short_name
ORDER BY
 N_genes DESC

Wow! The very high mutation counts for SKCM (melanoma) and LUAD
(lung adenocarcinoma) may not be surprising, but the high mutation
rate in endometial cancer (UCEC) may be less well known.

	Row

	project_short_name

	N_genes

	1

	TCGA-UCEC

	156877

	2

	TCGA-SKCM

	112324

	3

	TCGA-LUAD

	53119

	4

	TCGA-COAD

	51072

	5

	TCGA-LUSC

	44260

	6

	TCGA-STAD

	44229

	.

	
	

OK, let’s compute a Jaccard index across all samples in a few selected tumor-specific projects.
Look for how the ‘array’ gets used.

WITH
 --
 -- first we're going to extract just the project names, cases, and gene symbols,
 -- using the "GROUP BY" to make sure we only count one mutation per gene per case
 firstMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND project_short_name IN ('TCGA-PAAD', 'TCGA-GBM', 'TCGA-LGG')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol),
 --
 -- next we transform resulting table using the ARRAY_AGG function
 -- to create a list of mutated genes for each case
 arrayMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 firstMC3
 GROUP BY
 project_short_name,
 case_barcode),
 --
 -- now we can do some "set operations" on these gene-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 ARRAY_LENGTH(a.geneArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.geneArray) AS length2,
 --
 -- here's the intersection
 (
 SELECT
 COUNT(1)
 FROM
 UNNEST(a.geneArray) AS ga
 JOIN
 UNNEST(b.geneArray) AS gb
 ON
 ga = gb) AS gene_intersection,
 --
 -- and here's the union
 (
 SELECT
 COUNT(DISTINCT gx)
 FROM
 UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx) AS gene_union
 FROM
 arrayMC3 AS a
 JOIN
 arrayMC3 AS b
 ON
 a.case_barcode < b.case_barcode)
 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 case1,
 study1,
 length1 AS geneCount1,
 case2,
 study2,
 length2 AS geneCount2,
 gene_intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.1
 AND gene_intersection > 10
ORDER BY
 jaccard_index DESC

The top 5 results from the above query surprisingly find the highest similarity
between a GBM (glioblastoma) sample and PAAD (pancreatic adenocarcinoma) sample.
The net highest similarity is between a LGG (lower-grade glioma) sample and the
same PAAD sample. (Recall that our query above had, somewhat randomly, chosen
only GBM, LGG, and PAAD tumor-specific projects.)

[image: ../_images/april_table1.png]

[image: ../_images/april_plot2.png]
Fig1. Each dot represents a pair of cases and the associated Jaccard index. The blue points show the pairs that involve the GBM case TCGA-06-5416.

Those unions look high to me. Let’s double check them.

--
--
WITH
 g1 AS (
 SELECT
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND case_barcode = 'TCGA-06-5416'
 GROUP BY
 Hugo_Symbol),
--
--
--
 g2 AS (
 SELECT
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND case_barcode = 'TCGA-IB-7651'
 GROUP BY
 Hugo_Symbol)

--
-- First the intersection,
--
SELECT
 count (distinct a.Hugo_Symbol) AS n
FROM
 g1 AS a
JOIN
 g2 AS b
ON
 a.Hugo_Symbol = b.Hugo_Symbol

UNION ALL -- to bring the intersection and union queries together

--
-- then the union.
--
SELECT
 count (distinct Hugo_Symbol) AS n
FROM
 (select * from g1
 union all
 select * from g2)

ORDER BY n

The above query returns 2277 (intersection) and 8821 (union), which is
what we were expecting given the first row in the previous set of results.

Next we’ll turn our attention to the COSMIC catalog. We will select a single
sample, and perform the same Jaccard index across all samples in COSMIC
(removing TCGA samples in COSMIC), and see what comes up.
The sample we’ve selected for this next analysis is from the COAD project
(Colon Adenocarcinoma).

Similar to the MC3 table, variants in COSMIC have been annotated.
Let’s take a look at what types of variants are present.

--
-- What kind of mutations are found in COSMIC?
--
SELECT
 Mutation_Description,
 count(1) AS n
FROM
 `isb-cgc.COSMIC.grch37_v80`
GROUP BY
 Mutation_Description
ORDER BY n DESC

	Row

	Mutation_Description

	n

	1

	Substitution - Missense

	3115431

	2

	Substitution - coding silent

	1017162

	3

	Substitution - Nonsense

	204293

	4

	Unknown

	167135

	5

	Deletion - Frameshift

	113237

	6

	Insertion - Frameshift

	51345

	7

	Deletion - In frame

	37833

	8

	Insertion - In frame

	24870

	9

	Complex - deletion inframe

	3212

	10

	Nonstop extension

	2751

	…

	…

	…

So, like above, we will focus on the most common type of variant, the Missense.

 --
 -- First we'll select a single TCGA sample, with filters similar to the above.
 --
WITH
 --
 tcgaSample AS (
 SELECT
 sample_barcode_tumor,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 sample_barcode_tumor = 'TCGA-CA-6718-01A'
 AND Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 GROUP BY
 sample_barcode_tumor,
 Hugo_Symbol),
 --
 -- Then we'll create a sub-table of COSMIC samples, sans TCGA.
 --
 cosmicSample AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 WHERE
 STARTS_WITH(Sample_name, "TCGA") = FALSE
 AND Mutation_Description = 'Substitution - Missense'
 AND FATHMM_prediction = "PATHOGENIC"
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name),
 --
 -- Then we make the array of genes for the TCGA sample.
 --
 tcgaSampleArray AS (
 SELECT
 sample_barcode_tumor,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 tcgaSample
 GROUP BY
 sample_barcode_tumor),
 --
 -- Then we make the array of genes for each cosmic sample.
 --
 cosmicSampleArray AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 ARRAY_AGG(DISTINCT Gene_name) AS geneArray
 FROM
 cosmicSample
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source),
 --
 -- Next we can perform our set operations on the arrays.
 --
 setOpsTable AS (
 SELECT
 a.sample_barcode_tumor AS tcgaSample,
 b.Sample_name AS cosmicSample,
 b.Primary_site,
 b.Primary_histology,
 b.Sample_source,
 ARRAY_LENGTH(a.geneArray) AS length1,
 ARRAY_LENGTH(b.geneArray) AS length2,
 (SELECT COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb) AS gene_intersection,
 (SELECT COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx) AS gene_union
 FROM
 tcgaSampleArray AS a
 JOIN
 cosmicSampleArray AS b
 ON
 a.sample_barcode_tumor < b.Sample_name)
 --
 -- And build our final results.
 --
SELECT
 tcgaSample,
 length1 AS geneCount1,
 cosmicSample,
 Primary_site,
 Primary_histology,
 Sample_source,
 length2 AS geneCount2,
 gene_intersection AS intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.00
 AND gene_intersection > 5
 AND gene_union > 5
ORDER BY
 jaccard_index DESC

Recall that the TCGA-CA-6718-01A sample is from the COAD (colon adenocarcinoma) TCGA project.

[image: ../_images/april_table2.png]

Cool – the top COSMIC (non-TCGA) hit is from a very similar tumor type!
The other close matches are all from melanoma, a cancer with a very high
mutation rate which might result in “noisy” associations at this level.

Since the two mutation tables that we are comparing here (TCGA MC3 and COSMIC) use different
scores for assessing the implications of each somatic mutation, another idea would be
to integrate the
Tute Genomics [https://en.wikipedia.org/wiki/Tute_Genomics]
hg19 annotation table [https://bigquery.cloud.google.com/table/silver-wall-555:TuteTable.hg19?pli=1&tab=schema]
so that a single score can be used
in assessing the intersection of mutated genes between two cancer samples.

Thanks for joining us this month!

March, 2017

This month we’re going to compute a pairwise distance matrix and visualize
it using a heatmap in R. Many methods, such as clustering, depend on having a
distance matrix, and although I would not recommend using BigQuery to download
large tables, this works well for smaller feature sets (10s-100s).

In this example, we will be selecting primary tumor samples from both BRCA
and STAD cohorts, along with a list of the top 50 most variable miRNAs.
Then we’ll compute a pairwise distance metric on samples. The distance will
be based on Spearman’s correlation.

As usual, we are going to be using standard SQL, so make sure to select that
option.

WITH
 --
 -- *sample_lists*
 -- First, start by defining the list of BRCA TP samples.
 -- (TP == tumor, primary)
 --
 brca_sample_list AS (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_201607_beta.Biospecimen_data`
 WHERE
 SampleTypeLetterCode='TP'
 AND Study='BRCA'
 LIMIT
 50),
 --
 -- Then let's create a list of STAD samples.
 --
 stad_sample_list AS (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_201607_beta.Biospecimen_data`
 WHERE
 SampleTypeLetterCode='TP'
 AND Study='STAD'
 LIMIT
 50),
 --
 -- Now, we are going to merge the two sample tables using a UNION ALL.
 --
 sample_list AS (
 select * from stad_sample_list
 UNION ALL
 select * from brca_sample_list
),
 --
 -- *miRNA_list*
 -- Next, we define the miRNAs of interest. We order the miRNAs by standard
 -- deviation, then take the top 50. Notice we select value from the
 -- subset defined above.
 --
 miRNA_list AS (
 SELECT
 mirna_accession,
 STDDEV(normalized_count) AS sigma_count
 FROM
 `isb-cgc.tcga_201607_beta.miRNA_Expression`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 sample_list)
 GROUP BY
 mirna_accession
 ORDER BY
 sigma_count DESC
 LIMIT
 50),
 --
 -- *miRNA_data*
 -- Now that we have the sample_list and the mirna_list, we can select our
 -- data of interest from the larger miRNA_Expression table.
 --
 miRNA_data AS (
 SELECT
 SampleBarcode,
 Study,
 mirna_id,
 mirna_accession,
 LOG10(normalized_count+1) AS log10_count
 FROM
 `isb-cgc.tcga_201607_beta.miRNA_Expression`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 sample_list)
 AND mirna_accession IN (
 SELECT
 mirna_accession
 FROM
 miRNA_list)),
 --
 -- *pairs*
 -- Now, we JOIN the miRNA_data matrix with *itself*, creating all possible pairs of samples
 -- (excluding self-comparisons which are unnecessary) combined with a dense-ranking of
 -- the miRNA expression values. By computing the Pearson correlation on ranks, we
 -- end up with Spearman's correlation!
 --
 pairs AS (
 SELECT
 lhs.mirna_id,
 lhs.mirna_accession,
 lhs.SampleBarcode AS SampleA,
 rhs.SampleBarcode AS SampleB,
 lhs.Study AS StudyA,
 rhs.Study as StudyB,
 DENSE_RANK() OVER (PARTITION BY lhs.mirna_accession ORDER BY lhs.log10_count ASC) AS ExpA,
 DENSE_RANK() OVER (PARTITION BY rhs.mirna_accession ORDER BY rhs.log10_count ASC) AS ExpB
 FROM
 miRNA_data AS lhs
 JOIN
 miRNA_data AS rhs
 ON
 lhs.mirna_accession=rhs.mirna_accession
 AND lhs.SampleBarcode < rhs.SampleBarcode)
 --
 -- **Finally**, we compute the pairwise distance between each pair of samples.
 --
SELECT
 SampleA,
 SampleB,
 StudyA,
 StudyB,
 COUNT(mirna_accession) AS numObs,
 (1.-CORR(ExpA, ExpB)) AS sampleDistance
FROM
 pairs
GROUP BY
 SampleA,StudyA,
 SampleB,StudyB
ORDER BY
 sampleDistance ASC

Now, let’s see that distance matrix in R!

library(bigrquery) # make sure it's a recent version with the useLegacySql param!#

q <- "The Query From Above"

corrs <- query_exec(q, project="YOUR PROJECT ID", useLegacySql=F)

Use bigrquery to get the results or export the results to cloud storage and
download them like so.
gcs_url <- "gs://MY-BUCKET/MY-FILE.csv"
corrs <- read.csv(pipe(sprintf("gsutil cat %s", gcs_url)))

library(dplyr)
library(ggplot2)
library(pheatmap)

mat <- xtabs(sampleDistance~SampleA+SampleB, data=corrs)
or tidyr::spread(data=corrs, key=SampleA, value=sampleDistance, fill=0)

dim(mat) # 99 x 99

Make the matrix symmetric.
mat2 <- mat + t(mat)

Let's make an annotation matrix for cancer type
studyMat <- unique(corrs[,c("StudyA", "SampleA")])
studyMat$color <- ifelse(studyMat$Study == "BRCA", "blue", "red")
rownames(studyMat) <- studyMat$SampleA

We can show the distances between samples as a dendrogram
install.packages("dendextend")
library(dendextend)
hc <- hclust(as.dist(mat2), method="ward.D2")
dend <- as.dendrogram(hc)
labels_colors(dend) <- studyMat[labels(dend), "color"]
dend <- set(dend, "labels_cex", 0.5)

Fig1
plot(dend, main="BRCA in clue and STAD in red")

If we want to make two groups, then we cut the dendrogram
leaving two branches.
cas <- cutree(tree=hc, k=2)

Then we can use our cluster labels to annotate the heatmap.
annotMat <- data.frame(cluster=cas)
annotMat$SampleID <- names(cas)
rownames(annotMat) <- names(cas)
annotMat <- merge(x=annotMat, by.x="SampleID", y=studyMat, by.y="SampleA")
rownames(annotMat) <- annotMat$SampleID

And we can plot cluster assignments on a heatmap
to see how hclust-default and pheatmap-defaults compare.

Fig2
pheatmap(mat2, fontsize=6, annotation=annotMat[,-1])

Or we can use the dendsort library (from pheatmap examples)
library(dendsort)
callback = function(hc, ...){dendsort(hc)}

Fig3
pheatmap(mat2, fontsize=6, annotation=annotMat[,-1], clustering_callback = callback)

Modify ordering of the clusters using clustering callback option
callback = function(hc, mat){
 sv = svd(t(mat))$v[,1]
 dend = reorder(as.dendrogram(hc), wts = sv)
 as.hclust(dend)
}
Fig4
pheatmap(mat2, clustering_callback = callback, annotation=annotMat[,-1],
 fontsize_row=4, fontsize_col=4, border_color=NA)

[image: ../_images/brca_vs_stad_dendrogram.png]
Fig1. Dendrogram showing the sample-wise relationships based on miRNA expression.

[image: ../_images/brca_vs_stad_heatmap.png]
Fig2. Heatmap of pairwise distances, using pheatmap default clustering.

[image: ../_images/brca_vs_stad_heatmap_2.png]
Fig3. Heatmap of pairwise distances, using the dendsort library.

[image: ../_images/brca_vs_stad_heatmap_3.png]
Fig4. Ordering the samples after singular value decomposition.

February, 2017

This month, we explore user defined functions or UDFs. BigQuery allows
you to define custom functions, things that you can’t easily do in standard SQL, using JavaScript.
These functions are defined as
part of the SQL and then called within the query.

UDFs take a set of parameters, and return a value. They are strongly typed functions,
which means that we need to define the types of inputs and outputs. For example,
we might have FLOAT64 and BOOL input types and return a STRING.
See the official
Google documentation [https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions]
for the complete list of available types. (Note in particular that there is
no INT64 type, so you will need to use either FLOAT64 or STRING when
working with integers, depending on your needs.)

In our first example, we’ll define two new functions. The first classifies a sample
as having a higher expression value than a given input level. And second, a function
that glues three strings together. Then, in the SQL query we call both functions.
These initial queries will be starting points for a more complicated example below.

These queries use Standard SQL, so if you’re in the web interface,
remember to open the options panel and uncheck the ‘Use Legacy SQL’ button.

-- this next line tells BigQuery that a UDF is coming
CREATE TEMPORARY FUNCTION
 -- followed by the function name and parameter names/types:
 BiggerThan (x FLOAT64, y FLOAT64)
 -- and then the return type
 RETURNS BOOL
 -- and the language
 LANGUAGE js AS """
 // careful to use this delimiter for comments inside the function
 return (x > y);
 """;

-- now let's create another function that takes 3 input strings
-- combines them, using underscores and returns a single string:
CREATE TEMPORARY FUNCTION
 Combiner (x STRING, y STRING, z STRING)
 RETURNS STRING
 LANGUAGE js AS """
 return (x + "_" + y + "_" + z);
 """;

--
-- Now that we've defined our two UDFs, we can use them.
-- But first we're going to create an intermediate table
-- with the expression of ESR1 in the BRCA samples:
--
WITH
 gene1 AS (
 SELECT
 AliquotBarcode AS barcode1,
 Study AS study1,
 SampleTypeLetterCode AS code1,
 HGNC_gene_symbol AS gene_id1,
 AVG(LOG(normalized_count+1, 2)) AS count1
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 Study = 'BRCA'
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol = 'ESR1'
 AND normalized_count >= 0
 GROUP BY
 AliquotBarcode,
 gene_id1,
 study1,
 code1)

--
--
-- Now we can call our functions,
-- processing the subtable.
--
SELECT
 Combiner(barcode1, study1, code1) AS cString,
 BiggerThan(count1, 5.1) AS overExp
FROM
 gene1

OK, so that was just warm-up, and obviously what was being done with
the UDFs could have been done in SQL as well. But now we’re going to
do something a bit more complicated(!), and estimate cluster assignments
using a K-means algorithm
(wikipedia [https://en.wikipedia.org/wiki/K-means_clustering]),
implemented in JavaScript, as a UDF!

We’re going to try to cluster each BRCA sample based on the expression of
two genes: ESR1 and EGFR. This type of clustering is implemented as an iterative process
that starts with two random cluster centers. In each iteration, each sample is labeled
according to the nearest cluster-center, and then we recompute the locations of the
cluster centers.

CREATE TEMPORARY FUNCTION

 -- In this function, we're going to be working on arrays of values.
 -- we're also going to define a set of functions 'inside' the kMeans.

 -- *heavily borrowing from https://github.com/NathanEpstein/clusters* --

 kMeans(x ARRAY<FLOAT64>, -- ESR1 gene expression
 y ARRAY<FLOAT64>, -- EGFR gene expression
 iterations FLOAT64, -- the number of iterations
 k FLOAT64) -- the number of clusters

 RETURNS ARRAY<FLOAT64> -- returns the cluster assignments

 LANGUAGE js AS """
 'use strict'

 function sumOfSquareDiffs(oneVector, anotherVector) {
 // the sum of squares error //
 var squareDiffs = oneVector.map(function(component, i) {
 return Math.pow(component - anotherVector[i], 2);
 });
 return squareDiffs.reduce(function(a, b) { return a + b }, 0);
 };

function mindex(array) {
 // returns the index to the minimum value in the array
 var min = array.reduce(function(a, b) {
 return Math.min(a, b);
 });
 return array.indexOf(min);
};

function sumVectors(a, b) {
 // The map function gets used frequently in JavaScript
 return a.map(function(val, i) { return val + b[i] });
};

function averageLocation(points) {
 // Take all the points assigned to a cluster
 // and find the averge center point.
 // This gets used to update the cluster centroids.
 var zeroVector = points[0].location.map(function() { return 0 });
 var locations = points.map(function(point) { return point.location });
 var vectorSum = locations.reduce(function(a, b) { return sumVectors(a, b) }, zeroVector);
 return vectorSum.map(function(val) { return val / points.length });
};

function Point(location) {
 // A point object, each sample is represented as a point //
 var self = this;
 this.location = location;
 this.label = 1;
 this.updateLabel = function(centroids) {
 var distancesSquared = centroids.map(function(centroid) {
 return sumOfSquareDiffs(self.location, centroid.location);
 });
 self.label = mindex(distancesSquared);
 };
};

function Centroid(initialLocation, label) {
 // The cluster centroids //
 var self = this;
 this.location = initialLocation;
 this.label = label;
 this.updateLocation = function(points) {
 var pointsWithThisCentroid = points.filter(function(point) { return point.label == self.label });
 if (pointsWithThisCentroid.length > 0) {
 self.location = averageLocation(pointsWithThisCentroid);
 }
 };
};

var data = [];

// Our data list is list of lists. The small list being each (x,y) point
for (var i = 0; i < x.length; i++) {
 data.push([x[i],y[i]])
}

// initialize point objects with data
var points = data.map(function(vector) { return new Point(vector) });

// intialize centroids
var centroids = [];
for (var i = 0; i < k; i++) {
 centroids.push(new Centroid(points[i % points.length].location, i));
};

// update labels and centroid locations until convergence
for (var iter = 0; iter < iterations; iter++) {
 points.forEach(function(point) { point.updateLabel(centroids) });
 centroids.forEach(function(centroid) { centroid.updateLocation(points) });
};

// return the cluster labels.
var labels = []
for (var i = 0; i < points.length; i++) {
 labels.push(points[i].label)
}

return labels;

""";
--
-- *** In this query, we create two subtables, one for each gene of
-- interest, then create a set of arrays in joining the two tables.
-- We call the UDF using the arrays, and get a result back
-- made of arrays.
--
-- Due to a technical issue we save the table of arrays to
-- to a personal dataset, then unpack it. ***
--
WITH
 -- gene1, the first subtable
 --
 gene1 AS (
 SELECT
 ROW_NUMBER() OVER() row_number,
 AliquotBarcode AS barcode1,
 HGNC_gene_symbol AS gene_id1,
 AVG(LOG(normalized_count+1, 2)) AS count1
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 Study = 'BRCA'
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol = 'ESR1'
 AND normalized_count >= 0
 GROUP BY
 AliquotBarcode,
 gene_id1),
 --
 -- gene2, the second subtable
 --
 gene2 AS (
 SELECT
 AliquotBarcode AS barcode2,
 HGNC_gene_symbol AS gene_id2,
 AVG(LOG(normalized_count+1, 2)) AS count2
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 Study = 'BRCA'
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol = 'EGFR'
 AND normalized_count >= 0
 GROUP BY
 AliquotBarcode,
 HGNC_gene_symbol),
 --
 -- Then we create a table of arrays
 -- and join the two gene tables.
 -- ** We need to make sure all the arrays are constructed using the same index. **
 --
 arrayTable AS (
 SELECT
 ARRAY_AGG(m1.row_number ORDER BY m1.barcode1) AS arrayn,
 ARRAY_AGG(m1.barcode1 ORDER BY m1.barcode1) AS barcode,
 ARRAY_AGG(count1 ORDER BY m1.barcode1) AS esr1,
 ARRAY_AGG(count2 ORDER BY m1.barcode1) AS egfr
 FROM
 gene1 AS m1
 JOIN
 gene2 AS m2
 ON
 m1.barcode1 = m2.barcode2)
 --
 -- Now we call the k-means UDF.
 --
SELECT
 arrayn,
 barcode,
 esr1,
 egfr,
 kMeans(esr1, egfr, 200.0, 2.0) AS cluster
FROM
 arrayTable
 --
 -- save the resulting table to a personal dataset

We need to save the above results to an intermediate table. You will
need to have a dataset that you have write-access to in BigQuery
to do this. For your convenience, we’ve saved the query above as
a public gist [https://gist.github.com/smrgit/c80fd361603f8a7efa5d0444757c990b]
and also created a bitly link to it. Rather than pasting the entire
script into the BigQuery web UI, you can us the bq command line
(part of the cloud SDK [https://cloud.google.com/sdk/])
and run the query and automatically save the outputs as shown below.

#!/bin/bash

qFile="kMeans_in_BQ.sql"
get the lengthy query from the bitly link, and rename
wget -O $qFile http://bit.ly/2mn1R5D

before you can run this you will need to modify
the destination table to be in a project and dataset
that you have write-access to,
eg: dTable="isb-cgc:scratch_dataset.kMeans_out"
dTable="YOUR_PROJECT:DATASET_NAME.TMP_TABLE"

run the query using the 'bq' command line tool
not all of the options are strictly necessary -- with
the exception of "nouse_legacy_sql"
bq query --allow_large_results \
 --destination_table=$dTable \
 --replace \
 --nouse_legacy_sql \
 --nodry_run \
 "$(cat $qFile)" > /dev/null

The results of the kMeans query is one row of arrays.
It’s a little tricky to unpack the arrays into rows, which is what the next query does.
(Again you’ll need to edit it to select from the intermediate table you created
in the previous step. Remember that in Standard SQL, the delimiter between the
project name and the dataset name is just a ‘.’ whereas the bq command-line
requres a ‘:’ as a separator.)

WITH
 resultTable AS (
 SELECT
 *
 FROM
 `YOUR_PROJECT.DATASET_NAME.TMP_TABLE`)
SELECT
 index row_idx,
 barcode[OFFSET(index_offset)] AS AliquotBarcode,
 esr1[OFFSET(index_offset)] AS ESR1,
 egfr[OFFSET(index_offset)] AS EGFR,
 cluster[OFFSET(index_offset)] AS Cluster
FROM
 resultTable,
 UNNEST(resultTable.arrayn) AS index
WITH
OFFSET
 index_offset
ORDER BY
 index

Finall let’s visualize the resulting clusters!
Save the cluster assignments to a csv file, and read it into R.

library(ggplot2)
res0 <- read.table("results-from-the-k-means.csv", sep=",", header=T, stringsAsFactors=F)
qplot(data=res0, x=EGFR, y=ESR1, col=as.factor(Cluster))

[image: ../_images/kmeans_plot.png]

January, 2017

This month we’ll be comparing standard SQL and legacy SQL. It’s possible to write
queries using either form, but as we’ll see, using standard SQL can be easier to write
and improves readability.

In order to ‘activate’ standard SQL in the web browser, just under the
‘New Query’ text window, click the ‘Show Options’ button, and towards the bottom of the
options you’ll find the ‘Use Legacy SQL’ check box – uncheck that, and then you can
‘Hide Options’ to collapse the options away again.

To use R and bigrquery to execute
standard SQL, you’ll need to make sure you’re using the most up-to-date
version of the R package. I would recommend installing it from the github page
using devtools. Please see bigrquery [https://github.com/rstats-db/bigrquery] for more information
on installation. The important bit: there’s now support for sending a parameter
called ‘useLegacySql’ in the REST calls.

Our task this month will be to compute correlations between copy number variants and gene expression, over
all genes, using only BRCA samples. The copy number data is expressed in a series
of segments, each with a chromosome, start-point, end-point, and value
indicating whether a duplication or deletion event (or neither) has taken place.

Note that the mean copy-number values are not discrete because these data represent
heterogeneous mixtures of cells – only a fraction of the cells might include an
amplification or a deletion, so the ‘mean copy-number’ value represents the
effect of the discrete amplifications or deletions of a specific genomic segment,
averaged over the heterogenous population of cells.

One might hypothesize that a copy number amplified gene would have higher expression levels
than when not amplified. However, our gene expression data has no location information, making it
necessary to join the genomic locations from an appropriate reference.
The resulting annotated expression table can then be joined to the copy number segments.
But computing the overlap of DNA segments and genes locations can get tricky!
Below we show two different ways of accomplishing the task.

Data Tables

You can get familiar with the data sources by opening the BigQuery web interface
and taking a preview of the tables.

	isb-cgc.tcga_cohorts.BRCA … Curated cohort table for TCGA BRCA study: 1087 unique patients and 2236 unique samples.

	isb-cgc.genome_reference.GENCODE_v19 … This table is based on release 19 of the GENCODE reference gene set. Note that these annotations are based on the hg19/GRCh37 reference genome.

	isb-cgc.tcga_201607_beta.mRNA_UNC_HiSeq_RSEM … This table contains all mRNA expression data produced by the UNC-LCCC (Lineberger Comprehensive Cancer Center) using the Illumina HiSeq platform and processed through their RNASeqV2 / RSEM pipeline.

	isb-cgc.tcga_201607_beta.Copy_Number_segments … This table contains one row for each copy-number segment identified for each TCGA aliquot. Affymetrix SNP6 data is used in making the calls.

Legacy SQL

This query makes use of a legacy UDF or 'user defined function'.
To define UDFs in R, we need to define it 'inline'.
For another example of inline definitions, see:
https://github.com/googlegenomics/bigquery-examples/blob/master/pgp/sql/schema-comparisons/missingness-udf.sql

Big legacy SQL queries grow like onions, they start in the center,
and grow in layers, until the outer-most select statement returns the result.
And like onions, they will make you cry.

SELECT
 # Here's the final select statement, computing Pearson's correlation
 # on the avgCNsegMean, the copy number mean for a particular gene
 # and avglogExp, the average expression for the same gene.
 gene,
 chr,
 CORR(avgCNsegMean,avglogExp) AS corr,
 COUNT(*) AS n
FROM (

 SELECT
 # This is the select statement on the joined CN and expr tables,
 # where averages are computed on copy number and expression.
 annotCN.gene AS gene,
 annotCN.chr AS chr,
 annotCN.SampleBarcode AS SampleBarcode,
 AVG(annotCN.CNsegMean) AS avgCNsegMean,
 AVG(exp.logExp) AS avgLogExp
 FROM (

 SELECT
 # This is the select statement that annotates the CN segments via binning.
 # To annotate the segments, the CN segment start and end positions are binned,
 # as well as the gene reference information.
 # The bins provide a sort of grid that can be used for aligning the segments
 # to gene locations.
 geneInfo.gene AS gene,
 geneInfo.chr AS chr,
 geneInfo.region_start AS gene_start,
 geneInfo.region_end AS gene_end,
 geneInfo.bin AS bin,
 cnInfo.SampleBarcode AS SampleBarcode,
 cnInfo.Segment_Mean AS CNsegMean,
 cnInfo.region_start AS cn_start,
 cnInfo.region_end AS cn_end
 FROM (
 SELECT
 label AS gene,
 chr,
 region_start,
 region_end,
 bin
 FROM js (# This User-defined function bins the genome making the join possible.

 (SELECT
 gene_name AS label,
 FLOAT(start) AS value,
 LTRIM(seq_name,\"chr\") AS chr,
 start AS region_start,
 END AS region_end
 FROM
 [isb-cgc:genome_reference.GENCODE_v19]
 WHERE
 feature=\"gene\"
 AND gene_status=\"KNOWN\"
 AND source=\"HAVANA\"),

 label, value, chr, region_start, region_end,

 \"[{'name': 'label', 'type': 'string'}, // Output schema
 {'name': 'value', 'type': 'float'},
 {'name': 'chr', 'type': 'string'},
 {'name': 'region_start', 'type': 'integer'},
 {'name': 'region_end', 'type': 'integer'},
 {'name': 'bin', 'type': 'integer'}]\",

 \"function binIntervals(row, emit) {
 // This is JavaScript ... here we use '//' for comments
 // Legacy UDFs take a single row as input.
 // and return a row.. can be a different number of columns.
 var binSize = 10000; // Make sure this matches the value in the SQL (if necessary)
 var startBin = Math.floor(row.region_start / binSize);
 var endBin = Math.floor(row.region_end / binSize);

 // Since an interval can span multiple bins, emit
 // a record for each bin it spans.
 for(var bin = startBin; bin <= endBin; bin++) {
 emit({label: row.label,
 value: row.value,
 chr: row.chr,
 region_start: row.region_start,
 region_end: row.region_end,
 bin: bin,
 });
 }
 }\")) AS geneInfo

 JOIN EACH (
 # This is the join between the binned CNs, and the binned gene reference. #

 SELECT
 # This is the select statement that bins the gene reference information
 label AS SampleBarcode,
 value AS Segment_Mean,
 chr,
 region_start,
 region_end,
 bin
 FROM (js (
 (SELECT
 SampleBarcode AS label,
 Segment_Mean AS value,
 Chromosome AS chr,
 start AS region_start,
 END AS region_end
 FROM
 [isb-cgc:tcga_201607_beta.Copy_Number_segments]
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 [isb-cgc:tcga_cohorts.BRCA])),

 label,value,chr,region_start,region_end,

 \"[{'name': 'label', 'type': 'string'},
 {'name': 'value', 'type': 'float'},
 {'name': 'chr', 'type': 'string'},
 {'name': 'region_start', 'type': 'integer'},
 {'name': 'region_end', 'type': 'integer'},
 {'name': 'bin', 'type': 'integer'}]\",

 \"function binIntervals(row, emit) {
 // This is JavaScript ... here we use '//' for comments
 // Legacy UDFs take a single row as input.
 var binSize = 10000; // Make sure this matches the value in the SQL (if necessary)
 var startBin = Math.floor(row.region_start / binSize);
 var endBin = Math.floor(row.region_end / binSize);
 // Since an interval can span multiple bins, emit
 // a record for each bin it spans.
 for(var bin = startBin; bin <= endBin; bin++) {
 emit({label: row.label,
 value: row.value,
 chr: row.chr,
 region_start: row.region_start,
 region_end: row.region_end,
 bin: bin,
 });
 }
 }\"
))) AS cnInfo
 ON
 (geneInfo.chr = cnInfo.chr)
 AND (geneInfo.bin = cnInfo.bin)) AS annotCN

 JOIN EACH (
 # Here's the join between annotated copy number table and the gene expression table.

 SELECT
 # Here we get the gene expression data, and barcodes.
 # We join on the SampleBarcodes in each table.
 SampleBarcode,
 HGNC_gene_symbol,
 LOG2(normalized_count+1) AS logExp
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 [isb-cgc:tcga_cohorts.BRCA])) AS exp
 ON
 (exp.HGNC_gene_symbol = annotCN.gene)
 AND (exp.SampleBarcode = annotCN.SampleBarcode)
 GROUP BY
 gene,
 chr,
 SampleBarcode)
GROUP BY
 gene,
 chr
HAVING
 corr IS NOT NULL
ORDER BY
 corr DESC

Standard SQL

In standard SQL, we define a list of tables, that can build
off earlier definitions, so it's a little more linear and modular.

WITH
This says: "we're going to define a list of tables WITH which we will perform subsequent SELECTs..."

 geneInfo AS (
 # First table: the gene reference information
 SELECT
 gene_name AS gene,
 LTRIM(seq_name,'chr') AS chr,
 `start` as region_start,
 `end` as region_end
 FROM
 `isb-cgc.genome_reference.GENCODE_v19`
 WHERE
 feature='gene'
 AND gene_status='KNOWN'
 AND source = 'HAVANA'),

cnInfo AS(
 # Second: the copy number data, but only for the BRCA samples (note the sub-query).
 SELECT
 SampleBarcode,
 Segment_Mean,
 Chromosome AS chr,
 `start` AS region_start,
 `end` AS region_end
 FROM
 `isb-cgc.tcga_201607_beta.Copy_Number_segments`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_cohorts.BRCA`)),

gexp AS (
 # Third: we get the gene expression data, again only for the BRCA samples
 # included is a LOG() transform as well as an AVG() aggregation function
 # which will only be relevant if there are multiple expression values for
 # a single (gene,sample) pair.
 SELECT
 SampleBarcode,
 HGNC_gene_symbol,
 AVG(LOG(normalized_count+1,2)) AS logExp
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_HiSeq_RSEM`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_cohorts.BRCA`)
 GROUP BY
 SampleBarcode,
 HGNC_gene_symbol),

cnAnnot AS (
 # Now, we start to re-use previously defined tables. Here, we annotate
 # the copy-number segments by JOINing on matching chromosomes and
 # looking for overlapping regions between the copy-number segments and
 # the gene regions previously obtained from the GENCODE_v19 table.
 SELECT
 geneInfo.gene AS gene,
 geneInfo.chr AS chr,
 geneInfo.region_start AS gene_start,
 geneInfo.region_end AS gene_end,
 cnInfo.SampleBarcode AS SampleBarcode,
 AVG(cnInfo.Segment_Mean) AS Avg_CNsegMean
 FROM
 cnInfo JOIN geneInfo
 ON
 (geneInfo.chr = cnInfo.chr)
 WHERE
 (cnInfo.region_start BETWEEN geneInfo.region_start AND geneInfo.region_end) OR
 (cnInfo.region_end BETWEEN geneInfo.region_start AND geneInfo.region_end) OR
 (cnInfo.region_start < geneInfo.region_start AND cnInfo.region_end > geneInfo.region_end)
 GROUP BY
 gene,
 chr,
 gene_start,
 gene_end,
 SampleBarcode
),

bigJoin AS (
 # This is essentially the final step: in this last table definition, we make
 # a big join between the annotated copy-number table with the gene-expression
 # table and use the built-in CORR() function to compute a Pearson correlation.
 SELECT
 cnAnnot.gene AS gene,
 cnAnnot.chr AS chr,
 CORR(cnAnnot.Avg_CNsegMean,gexp.logExp) AS corr_cn_gexp,
 count(*) as n
 FROM
 cnAnnot join gexp
 ON
 (gexp.HGNC_gene_symbol = cnAnnot.gene)
 AND (gexp.SampleBarcode = cnAnnot.SampleBarcode)
 GROUP BY
 gene,
 chr
)

Finally, let's pull down all the rows!
select *
from bigJoin

R script

Here, we're going to execute the two above queries, and see how
the correlations compare.

library(bigrquery)
library(ggplot2)

my_project_id <- "xyz"

q_legacy <- " ... first query above"

q_std <- " ... second query from above ..."

legacy_res <- query_exec(q_legacy, project=my_project_id, useLegacySql=T)

std_res <- query_exec(q_std, project=my_project_id, useLegacySql=F)

res0 <- merge(legacy_res, std_res, by="gene")

dim(std_res)
#[1] 18447 4

dim(legacy_res)
#[1] 18424 4

dim(res0)
#[1] 18424 7

qplot(data=res0, x=corr_cn_gexp, y=corr, main="CN and Expr correlation in BRCA",
 xlab="Standard SQL", ylab="Legacy SQL")

[image: ../_images/jan_results.png]

This plot shows the correlations found using the Legacy SQL solution (y-axis) compared
to the correlations found using the Standard SQL solution (x-axis). Note that an exact
match between the two methods was not expected because the implementation is not identical.
The “legacy” solution bins the copy-number segment values into uniform length genomic
segments, while the “standard” solution takes a simpler approah.

December, 2016

The ISB-CGC team is starting to add the new hg38-based TCGA data available from the
NCI-GDC Data Portal [https://gdc-portal.nci.nih.gov/] and one of the first obvious questions
might be: how does the new hg38 expression data compare to the hg19 data?

Description

This is exactly the type of question that the ISB-CGC resources and the BigQuery engine
were made to answer. In a single SQL query, we will compare two sets of gene-level
expression estimates based on RNA-Seq data.
The first set consists of the hg19-based
RSEM [http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-323]
normalized gene-level
expression values previously available from the TCGA DCC and now available in
an easy-to-use table in BigQuery (and also from the
NCI-GDC Legacy Archive [https://gdc-portal.nci.nih.gov/legacy-archive]).
The second set was produced by the
NCI-GDC mRNA Analysis Pipeline [https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/]
which includes a STAR alignment to hg38, and gene expression quantification using
HTSeq [http://www-huber.embl.de/HTSeq/doc/overview.html]
(with annotation based on
GENCODE v22 [http://www.gencodegenes.org/releases/22.html]).

Rather than look at one gene at a time, it’s easy (and fast!) to compute correlations
for all genes simultaneously. Note that this is done in a single query. You do not
want to loop over all of the genes, computing one correlation at a time because the
cost of a BigQuery query depends primarily on the amount of data scanned during the
query, and since the data for all genes across all TCGA samples are in a single
table, if you were to loop over 10,000 genes running one query per gene, your costs would
go up by a factor of 10,000! As we show below, BigQuery computes across all the genes
at once (one of its benefits), and thus keeps the costs low.

In addition to using the two gene-expression data tables, our SQL query also
uses the GENCODE_v22 table (one of many tables in the isb-cgc.genome_reference dataset)
to map from the HGNC gene symbol (used in the older hg19 expression table) to the
Ensembl gene identifier (used in the new hg38 expression table).

The query below performs both
Pearson and Spearman correlations for each gene.
The result is a table with 20,021 rows – one for each gene, with the Ensembl gene
identifier, the gene symbol, the Pearson and Spearman correlation coefficients,
and the difference between the two. The table has also been sorted by the
Spearman coefficient, in descending order. This query executes in less than
one minute and processes a total of 34 GB of data. This is a great example of how cloud
computing can significantly enhance analytic capabilities beyond running large analytic
bioinformatics pipelines quickly!

Back in June, Google
announced [https://cloud.google.com/blog/big-data/2016/06/bigquery-111-now-with-standard-sql-iam-and-partitioned-tables]
full support for Standard SQL in BigQuery. The query below makes use of Standard SQL,
so if you want to try running this query yourself by cutting-and-pasting it into the
BigQuery web UI [https://bigquery.cloud.google.com] you’ll need to go into the
Show Options section and uncheck the “Use Legacy SQL” box. If you’re used to
using Legacy SQL, one small change you’ll need to make right away is in how
you refer to tables: rather than [isb-cgc:genome_reference.GENCODE_v22] for
example, you will instead write isb-cgc.genome_reference.GENCODE_v22 inside single-quotes.

As a concrete example of what these data look like, we created plots of
the expression data for EGFR in R
(see below for the SQL and R code).

BigQuery SQL

WITH
--
-- *GdcGene*
-- We start by extracting gene-expression data from the new NCI-GDC/hg38-based
-- table in the isb-cgc:hg38_data_previews dataset. For each row, we
-- extract simply the SamplesSubmitterID (aka the TCGA sample barcode),
-- the Ensembl gene ID (eg ENSG00000182253), and the FPKM value. The input
-- table has ~671M rows and many more fields, but we just need these 3.
GdcGene AS (
SELECT
 SamplesSubmitterID AS sampleID,
 Ensembl_gene_ID AS geneID,
 HTSeq__FPKM AS HTSeq_FPKM
FROM
 `isb-cgc.hg38_data_previews.TCGA_GeneExpressionQuantification`),
--
-- *GeneRef*
-- Next, we're going to get the gene-id to gene-symbol mapping from the GENCODE
-- reference table because the NCI-GDC table reference above contains only the gene-id
-- while the expression data we want to compare that to contains gene symbols.
GeneRef AS (
SELECT
 gene_id,
 gene_name
FROM
 `isb-cgc.genome_reference.GENCODE_v22`
WHERE
 feature='gene'),
--
-- *Hg38*
-- Now we'll join the two tables above to annotate the NCI-GDC expression data with gene-symbols,
-- and we'll call it Hg38. We're also going to create a ranking of the expression values
-- so that we can compute a Spearman correlation later on.
Hg38 AS (
SELECT
 GdcGene.sampleID,
 GdcGene.geneID,
 GeneRef.gene_name,
 GdcGene.HTSeq_FPKM,
 DENSE_RANK() OVER (PARTITION BY GdcGene.geneID ORDER BY GdcGene.HTSeq_FPKM ASC) AS rankHTSeq
FROM
 GdcGene
JOIN
 GeneRef
ON
 GdcGene.geneID = GeneRef.gene_id),
--
-- *Hg19*
-- Now, we'll get the older hg19-based TCGA gene expression data that was generated
-- by UNC using RSEM. This table has ~228M rows and we're just going to extract
-- the sample-barcode, the gene-symbol, the normalized-count, and the platform (since
-- this data ws produced on two different platforms and this might be relevant later).
-- As above, we will also create ranking of the expression values.
Hg19 AS (
SELECT
 SampleBarcode,
 HGNC_gene_symbol,
 normalized_count as RSEM_FPKM,
 DENSE_RANK() OVER (PARTITION BY HGNC_gene_symbol ORDER BY normalized_count ASC) AS rankRSEM,
 Platform
FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
WHERE
 HGNC_gene_symbol IS NOT NULL),
--
-- *JoinAndCorr*
-- Finally, we join the two tables and compute correlations
JoinAndCorr AS (
SELECT
 hg38.geneID AS gene_id,
 hg38.gene_name AS gene_name,
 CORR(LOG10(hg38.HTSeq_FPKM+1),
 LOG10(hg19.RSEM_FPKM+1)) AS gexpPearsonCorr,
 CORR(hg38.rankHTSeq,
 hg19.rankRSEM) AS gexpSpearmanCorr
FROM
 Hg19
JOIN
 Hg38
ON
 hg38.sampleID=hg19.SampleBarcode
 AND hg38.gene_name=hg19.HGNC_gene_symbol
GROUP BY
 hg38.geneID,
 hg38.gene_name)
--
-- Lastly, we make one last select
-- to get a difference between Pearson and Spearman correlations.
SELECT
 gene_id,
 gene_name,
 gexpPearsonCorr,
 gexpSpearmanCorr,
 (gexpSpearmanCorr-gexpPearsonCorr) AS deltaCorr
FROM
 JoinAndCorr
WHERE
 IS_NAN(gexpSpearmanCorr) = FALSE
ORDER BY
 gexpSpearmanCorr DESC

The results of any BigQuery query executed in the BigQuery web UI can easily be saved
to a table in case you want to perform follow-up queries on the result. For example
we might want to ask what the distribution of the correlation coefficients produced
by the preceding query look like. We can ask BigQuery to compute the deciles
on the saved results like this:

SELECT
 APPROX_QUANTILES (gexpPearsonCorr, 10) AS PearsonQ,
 APPROX_QUANTILES (gexpSpearmanCorr, 10) AS SpearmanQ,
 APPROX_QUANTILES (deltaCorr, 10) AS deltaQ
FROM
 `<<insert your results table name here>>`

The result of the above query shows that 80% of genes have a Pearson correlation >= 0.84 and a
Spearman correlation >= 0.88, and that 80% of the time the difference between
these two correlations is between -0.012 and +0.098. The median Pearson
correlation is nearly 0.93 and the median Spearman correlation is nearly 0.96.

Visualizations

[image: ../_images/correlation_btw_hg19_hg38_v3.jpg]

This plot shows the cumulative distribution of the Pearson correlation between
the hg19 RSEM expression and the hg38 HTSeq expression data. Each point
represents one gene.

[image: ../_images/egfr_hg19_vs_hg38_v2.jpg]

This plot shows the EGFR log10 expression, with the hg19 RSEM values on the x-axis and
the hg38 HTSeq values on the y-axis. Note that overall, the difference between the RSEM
and HTSeq methods may have a more significant impact on the expression values than
the change in the genome build.

[image: ../_images/egfr_hg19_vs_hg38_ranked_v2.jpg]

This plot shows the ranked EGFR expression, with the hg19 RSEM values on the x-axis
and the hg38 HTSeq values on the y-axis.

R Script

Note that the latest version of the bigrquery package supports standard SQL, so make sure you’re up to date.

library(devtools)
devtools::install_github("rstats-db/bigrquery")

library(bigrquery)
library(ggplot2)
library(stringr)

saving the above query as a string variable named 'q'

res1 <- query_exec(q, project='isb-cgc-02-abcd', useLegacySql = FALSE)

n <- dim(res1)[1]
ys <- c(0.5, 0.9, 0.95, 0.99)
ls <- sapply(1:4, function(i) sum(res1$gexpPearsonCorr < ys[i]))

qplot(x=1:n, y=sort(res1$gexpPearsonCorr)) + geom_line() +
geom_hline(yintercept = ys, col='grey', lty=2) +
geom_vline(xintercept = ls, col='grey', lty=2) +
annotate(geom="text", label=ls[1], x=ls[1], y=0) +
annotate(geom="text", label=ls[2], x=ls[2], y=0) +
annotate(geom="text", label=ls[3], x=ls[3], y=0) +
annotate(geom="text", label=ls[4], x=ls[4], y=0) +
annotate(geom="text", label="50", y=ys[1], x=0) +
annotate(geom="text", label="90", y=ys[2], x=0) +
annotate(geom="text", label="95", y=ys[3], x=0) +
annotate(geom="text", label="99", y=ys[4], x=0) +
xlab("> 20K genes sorted by correlation value") +
ylab("Pearson correlation between \nhg38.a.expFPKM and hg19.normalized_count") +
ggtitle("Pearson correlation between \nhg38.a.expFPKM and hg19.normalized_count") +
theme_bw() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
 panel.background = element_blank(), axis.line = element_line(colour = "black"))

As an exercise, you could make the above plot with Spearman's correlations.

Then let's take a look at one of our favorite genes, EGFR.

q <- "
 WITH
 --
 Hg38 AS (
 SELECT
 SamplesSubmitterID AS sampleID,
 Ensembl_gene_ID AS geneID,
 DENSE_RANK() OVER (PARTITION BY Ensembl_gene_ID ORDER BY HTSeq__FPKM ASC) AS rankHTSeq,
 HTSeq__FPKM AS HTseq_FPKM
 FROM
 `isb-cgc.hg38_data_previews.TCGA_GeneExpressionQuantification`
 WHERE
 Ensembl_gene_ID = 'ENSG00000146648'),
 --
 Hg19 AS (
 SELECT
 SampleBarcode,
 HGNC_gene_symbol,
 normalized_count as RSEM_FPKM,
 DENSE_RANK() OVER (PARTITION BY HGNC_gene_symbol ORDER BY normalized_count ASC) AS rankRSEM,
 Platform
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 HGNC_gene_symbol = 'EGFR')
 --
 -- *Join and Get Expr*
 SELECT
 hg38.geneID AS gene_id,
 hg19.HGNC_gene_symbol AS gene_name,
 LOG10(hg38.HTseq_FPKM+1) as Log10_hg38_HTSeq,
 LOG10(hg19.RSEM_FPKM+1) AS Log10_hg19_RSEM,
 rankRSEM,
 rankHTSeq
 FROM
 Hg19
 JOIN
 Hg38
 ON
 hg38.sampleID=hg19.SampleBarcode
 GROUP BY
 gene_id,
 gene_name,
 Log10_hg38_HTSeq,
 Log10_hg19_RSEM,
 rankRSEM,
 rankHTSeq"

result <- query_exec(q, project="isb-cgc-02-abcd", useLegacySql=F)

qplot(data=result, x=Log10_hg19_RSEM, y=Log10_hg38_HTSeq, main="EGFR, hg19 vs hg38, Pearson's = 0.93", xlab="Log10 RSEM hg19", ylab="Log10 HTSeq hg38")

qplot(data=result, x=rankRSEM, y=rankHTSeq, main="EGFR, hg19 vs hg38, Spearman's = 0.96", xlab="Rank RSEM hg19", ylab="Rank HTSeq hg38")

As an exercise, try plotting some other genes. Maybe genes
with both high and low correlations. What do you notice?

Let us know if you’re having trouble! We’re here to help.

Additional Resources:

	ISB-CGC examples-R [https://github.com/isb-cgc/examples-R] github repo

	ISB-CGC Analysis with R workshop material

	BigQuery web UI quickstart [https://cloud.google.com/bigquery/quickstart-web-ui]

	BigQuery 101 video [https://www.youtube.com/watch?v=kKBnFsNWwYM]

	Fun with a Petabyte: Pushing the limits of Google BigQuery video [https://www.youtube.com/watch?v=6Nv18xmJirs]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

TCGA Radiology and Pathology Image Data

The TCGA images from The Cancer Imaging Archive [http://www.cancerimagingarchive.net/] (TCIA)
as well as the pathology and diagnostic images previously available from the
Cancer Digital Slide Archive [http://cancer.digitalslidearchive.net/] (CDSA)
are all now available in the ISB-CGC open-access Google Cloud Storage (GCS) bucket,
gs://isb-cgc-open/ [https://console.cloud.google.com/storage/browser/isb-cgc-open/].

Metadata for these files can be found in BigQuery, in the ISB-CGC metadata
dataset [https://bigquery.cloud.google.com/dataset/isb-cgc:metadata].

Radiology Images

Over 1.4 million radiology image files in
DICOM [https://en.wikipedia.org/wiki/DICOM] format,
grouped together into over 20,000 zip files are available in Google Cloud Storage (GCS).
Each zip file may contain hundreds of images, or just a single image.

The BigQuery metadata table, isb-cgc.metadata.TCGA_radiology_images contains
the full urls to these zip files, and the unzipped files can be found in folders of the same name, eg:

gs://isb-cgc-open/TCIA/images/TCGA-GBM/TCGA-06-5413/TCIA.image.1.3.6.1.4.1.14519.5.2.1.4591.4001.275342915307453440215680715165.zip
gs://isb-cgc-open/TCIA/images/TCGA-GBM/TCGA-06-5413/TCIA.image.1.3.6.1.4.1.14519.5.2.1.4591.4001.275342915307453440215680715165/*.dcm

The metadata table also includes the patient identifier in TCGA “barcode” format,
eg TCGA-06-5413 (which is also part of the GCS url). Other information available in the
table includes the body part examined, image modality, patient age, etc.

Pathology Images

Over 30,000 TCGA tissue slide images in
SVS [http://openslide.org/formats/aperio/] format, are also available in GCS.
These files were uploaded from the
NCI-GDC legacy archive [https://gdc-portal.nci.nih.gov/legacy-archive/search/f?filters=%7B%22op%22:%22and%22,%22content%22:%5B%7B%22op%22:%22in%22,%22content%22:%7B%22field%22:%22files.data_format%22,%22value%22:%5B%22SVS%22%5D%7D%7D%5D%7D].

The BigQuery metadata table, isb-cgc.metadata.TCGA_slide_images contains
the full urls to these SVS files, eg
gs://isb-cgc-open/NCI-GDC/legacy/TCGA/TCGA-GBM/Other/Diagnostic_image/208fa2ac-69a8-4851-b13e-1f000872bf7f/TCGA-06-5413-01Z-00-DX1.6c5e8a47-c2d0-4873-9b32-36857c5f67ac.svs,
as well as the TCGA case and sample “barcode” which can be used to join this table
with other TCGA clinical, biospecimen and molecular data tables.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Pre-Workshop Information

This information is currently intended only for attendees who have
signed up for the
workshops at NCI on May 24th and 25th [https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/nci-cancer-genomics-cloud-workshop].
After the workshops, all materials will be made available as part of the
ISB-CGC documentation here on readthedocs.

Please check back again before the day of the workshop!

Step #1: Basic Information and your own GCP project

Basic Information

Please send the following information to info@isb-cgc.org ASAP

	your Google identity (for example your gmail address)

	are you bringing a Mac or Windows laptop?

	do you have non-TCGA data that you want to begin analyzing during the workshop?

If you don’t already have a Google identity, you can
create one [https://accounts.google.com/SignUp?dsh=308321458437252901&continue=https%3A%2F%2Faccounts.google.com%2FManageAccount#FirstName=&LastName=].

Google Cloud Platform (GCP) project

Everyone should have their own GCP project set up before the day of the workshop.
We will also add everyone to a temporary “workshop” GCP project.

We’d like to encourage you to take advantage of the
free trial [https://cloud.google.com/free/] offered by Google.
If you have already used this one-time offer (or there is some other reason you cannot use it)
let us know and we will set you up with an
ISB-CGC provided (and funded) project. (We’ll also be happy to do that for
you after you use the $300 free trial.)

When you send us your Google identity, please let us know if you already have
your own GCP project.

Questions?

Feel free to ask any other questions you might have about the workshops or
give us additional information about your specific use-case or goals for
the workshop. The workshop will be your hands-on introduction to the ISB-CGC;
be assured that we will follow up with you after the workshops to provide
any additional support you will need.

Step #2: How to prepare for the workshop

Here are some ways that you can prepare for the workshops:

Strongly Recommended:
* install Google Chrome [https://www.google.com/chrome/browser/desktop/] on your laptop
* learn your way around the Google Cloud Console [https://console.cloud.google.com] – follow along with this 15 minute tutorial [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]
* enable the following APIs for your GCP project: BigQuery, Genomics, and Compute Engine – this should take less than 5 minutes [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]

Suggested:
* install the Cloud SDK [https://cloud.google.com/sdk/] on your laptop
* install R [https://cran.r-project.org/] and RStudio [https://www.rstudio.com/products/rstudio/download/] on your laptop, and follow these tips to get started

Additional Resources:
* A Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]
* How to Enable APIs for your GCP Project [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]
* An Introduction to BigQuery [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]
* An Introduction to Cloud Datalab [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Datalab.pdf]
* An Introduction to Cloud Shell [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Shell.pdf]

Sign in to and explore the ISB-CGC Web App [https://isb-cgc.appspot.com/], peruse the ISB-CGC Documentation [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/] and our open-source code on GitHub [https://github.com/isb-cgc/]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Pre-Workshop Information

This information is currently intended only for attendees of one of our
two August 2016 workshops
(at ISB [https://shmulevich.systemsbiology.org/cancer-genomics-cloud-workshop/],
and at the UEF summer school [http://summerschool.uef.fi/sumsco-biomedical-data-science]).
After the workshops, all materials will be made available as part of the
ISB-CGC documentation here on readthedocs.

Important Information

	All workshop attendees should bring a personal laptop. (A few loaner-laptops may be available at the ISB workshop – please contact us ASAP if you might need one.)

	A Google identity (eg your gmail address) is required in order to sign in to the ISB-CGC Web App [https://isb-cgc.appspot.com/]. If you don’t already have a Google identity, you can create one [https://accounts.google.com/SignUp?dsh=308321458437252901&continue=https%3A%2F%2Faccounts.google.com%2FManageAccount#FirstName=&LastName=].

Google Cloud Platform (GCP) project

	All workshop attendees will be provided with temporary credentials to a GCP project, but if you already have access to a GCP project you will be able to follow along using that project.

	We encourage everyone who has not already taken advantage of the free trial [https://cloud.google.com/free/] offered by Google to do so. This offer provides you with your own personal GCP project and $300 in “cloud credits” to be used over the course of one year. (You will need to provide a credit card, but no charges will be billed to it without your consent.)

	Please note that some of the workshop examples will require that you have “Owner” privileges to a GCP project. The temporary credentials mentioned above will only include “Editor” privileges.

Questions?

	Feel free to email us (workshop@isb-cgc.org) with any questions you might have about the workshop or to give us additional information about your specific use-cases and goals for the workshop. The workshop will be your hands-on introduction to the ISB-CGC.

Preparing for the Workshop

Here are some ways that you can prepare for the workshop:

Strongly Recommended:

	install Google Chrome [https://www.google.com/chrome/browser/desktop/] on your laptop

	learn your way around the Google Cloud Console [https://console.cloud.google.com] – follow along with this 15 minute tutorial [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]

	if you have your own GCP project, enable the following APIs: BigQuery, Genomics, and Compute Engine – this should take less than 5 minutes [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]

Suggested:

	install the Cloud SDK [https://cloud.google.com/sdk/] on your laptop

	install R [https://cran.r-project.org/] and RStudio [https://www.rstudio.com/products/rstudio/download/] on your laptop, and follow these tips to get started

	sign in to and explore the ISB-CGC Web App [https://isb-cgc.appspot.com/], peruse the ISB-CGC Documentation [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/] and our open-source code on GitHub [https://github.com/isb-cgc/]

Additional Resources:

	ISB-CGC / Google Cloud materials

	A Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]

	How to Enable APIs for your GCP Project [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]

	An Introduction to BigQuery [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]

	An Introduction to Cloud Datalab [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Datalab.pdf]

	An Introduction to Cloud Shell [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Shell.pdf]

	Google Genomics

	Overview [https://cloud.google.com/genomics/]

	Sign up [https://cloud.google.com/genomics/#contact-form] to receive the Google Genomics whitepaper

	github repositories [https://github.com/googlegenomics]

	Google Genomics Cookbook [https://googlegenomics.readthedocs.io/en/latest/] with sections on:

	finding published data sources [https://googlegenomics.readthedocs.io/en/latest/use_cases/discover_public_data/index.html]

	data-processing [https://googlegenomics.readthedocs.io/en/latest/sections/process_data.html] on the Google Cloud

	data-analysis [https://googlegenomics.readthedocs.io/en/latest/sections/analyze_data.html] on the Google Cloud

	accessing data using IGV [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/igv.html], BioConductor [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/bioconductor.html], R [https://googlegenomics.readthedocs.io/en/latest/api-client-r/index.html], Python [https://googlegenomics.readthedocs.io/en/latest/use_cases/getting-started-with-the-api/python.html] and more!

	DREAM challenges powered by Sage Bionetworks [http://sagebase.org/]

	Overview [http://dreamchallenges.org/]

	Design and Methodology [http://dreamchallenges.org/designmethodology/]

	FAQ [http://dreamchallenges.org/faqs/]

	Somatic Mutation Calling Challenge: RNA [https://www.synapse.org/#!Synapse:syn2813589/wiki/401435] – Registration is now open!

	Publications [http://dreamchallenges.org/publications/] from past challenges

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

ISB-CGC Workshop

This information is currently intended for attendees of the August 2nd workshop at ISB.
After the workshops, all materials will be made available as part of the
ISB-CGC documentation here on readthedocs.

If you want to have another look at the Pre-Workshop information we sent you, here it is.

Before we get started …

As soon as you’ve found a seat and opened up your laptop, please do the following:

	check your email for the latest workshop information, including links to materials as well as a link to a WebEx session – you do not need to join the WebEx, but you might find it a useful way to see the what is being projected directly on your laptop;

	sign into your Chrome browser using the Google identity you provided to us, or the “temporary” Google identity that was given to you this morning;

	go to the Google Cloud Platform Console [https://console.cloud.google.com]

	you should not have to sign in again, but if you are asked to, use the same Google identity again

	in the top blue bar, towards the right, you should see a project name, eg “ISB-CGC Workshop” – if you are a member of two or more projects, then you will be able to select a project using that pulldown;

	if you have any questions or are unable to access the Google Cloud Console, please raise your hand!

[image: ../_images/console_top.png]

	if you do have your own GCP project, now would be a good time to make sure that you have certain APIs enabled. (If you don’t know how, take a look at this tutorial [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf].) Specifically, you will need these APIs enabled (some may already be enabled by default):

	Google Compute Engine

	Google Genomics

	Google Cloud Logging

	Google Cloud Pub/Sub

	find out what access-privileges you have in your GCP project: go to the IAM & Admin [https://console.cloud.google.com/iam-admin/iam] section of the Cloud Console, look for your identity (eg gmail address) and look at which Role(s) are listed to the right;

	just for fun, if you have time: in a separate browser tab, open up the BigQuery Web UI [https://bigquery.cloud.google.com]

	click on the red COMPOSE QUERY button in the upper left corner, and then cut and paste the simple SQL query below into the New Query box and then click on the red RUN QUERY button

	try out the Format Query button, and the Explanation button above the Results

	try modifying the query to make it invalid and then click on the red exclamation mark (below the query box on the far right)

	you can find additional information about accessing and working with the ISB-CGC BigQuery tables on several other pages here on readthedocs – try typing “BigQuery” into the “Quick search” box over in the left panel!

	at the bottom of this page are links to several quickstart tutorials – one of them is all about BigQuery

SELECT COUNT(*) AS n, Study, Gender
FROM [isb-cgc:tcga_201607_beta.Clinical_data]
GROUP BY Gender, Study
ORDER BY n DESC, Study, Gender

Workshop Outline & Links

ISB Cancer Genomics Cloud (ISB-CGC)

	Introductions, Overview etc

	Introduction to the ISB-CGC Platform [https://github.com/isb-cgc/readthedocs/raw/master/docs/include/workshop-intro-Aug2016.pdf]

	A Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]

	Copy/Paste Cheat Sheet [https://docs.google.com/document/d/1LYSRlmm2RwpuOpnpqjmRxHhZ6kU18grz3o5IPq_OhJ8/edit?usp=sharing] (you might find this useful later on in the day)

	ISB-CGC Web App & API Endpoints

	Web-App Tutorial (walkthrough [https://docs.google.com/document/d/1z3XWf_cA-IyqRwmaZofZb5FCWPaW3KU8trXsrafm46c/edit?usp=sharing]) (doc)

	API Endpoints demo (doc)

	ISB-CGC Open-Access BigQuery Tables

	Overview of TCGA data (doc)

	BigQuery SQL Tutorial

	Analysis using R (github [https://github.com/isb-cgc/examples-R])

	Lunch and Open Q&A Session

	Computing in the Cloud

	Useful References: Cloud SDK cheat sheet [https://docs.google.com/document/d/1ZZTsjHzQClA0gZyOhlBav-I4XQhW81Yx980qvgy_jr8/edit?usp=sharing]

	Introduction to GCE (Google Compute Engine) (slides [https://docs.google.com/presentation/d/13ORIDboGC27uCMf_C9w9WIi0cK9tGO7cqgp6vwA2miE/edit?usp=sharing])

	Google Genomics “Pipelines” Service (slides [https://docs.google.com/presentation/d/1_rRvlhNuA0_SQuO2SOru7ttjPvzlygW3ALILcQ-JEjg/edit?usp=sharing])

	ISB-CGC Pipelines Framework (slides [https://docs.google.com/presentation/d/1akqoZImzei2D47O8rcWrcEzsWPYxUtL-2-eUdiBzzgo/edit?usp=sharing], github [https://github.com/isb-cgc/ISB-CGC-pipelines])

DREAM Challenge: Somatic Mutation Challenge – RNA

	DREAM challenges powered by Sage Bionetworks [http://sagebase.org/]

	Presentation [https://docs.google.com/presentation/d/1p5W7ZDdahBYKBOcHu1wTeDClBbq7baDJs6EdMscupkc/edit?usp=sharing]

	Somatic Mutation Calling Challenge: RNA [https://www.synapse.org/#!Synapse:syn2813589/wiki/401435] – Registration is now open!

Google Genomics

	Overview [https://cloud.google.com/genomics/]

	Sign up [https://cloud.google.com/genomics/#contact-form] to receive the Google Genomics whitepaper

	github repositories [https://github.com/googlegenomics]

	Google Genomics Cookbook [https://googlegenomics.readthedocs.io/en/latest/] with sections on:

	finding published data sources [https://googlegenomics.readthedocs.io/en/latest/use_cases/discover_public_data/index.html]

	data-processing [https://googlegenomics.readthedocs.io/en/latest/sections/process_data.html] on the Google Cloud

	data-analysis [https://googlegenomics.readthedocs.io/en/latest/sections/analyze_data.html] on the Google Cloud

	accessing data using IGV [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/igv.html], BioConductor [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/bioconductor.html], R [https://googlegenomics.readthedocs.io/en/latest/api-client-r/index.html], Python [https://googlegenomics.readthedocs.io/en/latest/use_cases/getting-started-with-the-api/python.html] and more!

Quickstart Tutorials and Other Useful Links

	An Introduction to BigQuery [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]

	An Introduction to Cloud Datalab [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Datalab.pdf]

	An Introduction to Cloud Shell [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Shell.pdf]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

BigQuery Data Overview

The diagram below illustrates some of the important relationships between our BigQuery
tables. The yellow, red and blue nodes all represent tables in BigQuery. The green
nodes represent fields that are common to two or more tables and can be used in “JOIN”
operations if you want to link information found in one table with relevant information
found in another table. These same fields may also be useful in “GROUP BY” operations.

	The nodes are color-coded as follows:

	
	green indicates a common field in the schemas of one or more tables

	red indicates a TCGA table

	yellow indicates a reference table (eg genomic or platform reference)

	blue indicates a metadata table (eg file manifest, or other metadata)

All of the TCGA tables include patient, sample, and/or aliquot
barcodes [https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode] on each row.
(The actual field names are typically ParticipantBarcode, SampleBarcode, or AliquotBarcode.)
Almost all of these tables also include a field called Study which contains the
TCGA tumor-type abbreviation (eg BRCA for breast cancer, GBM for glioblastoma multiforme, etc).
Most of the molecular data tables include gene (or miRNA) symbols or identifiers, some include
chromosomal coordinates, and some include both (eg the somatic mutation calls (SMC) table).

[image: ../../_images/BQ-layout2b-20jul2016.png]
If you want to map DNA methylation data onto copy-number data, you will need to perform
multiple JOINs. The figure below isolates these two specific TCGA data tables
from the larger diagram above to make the relationships easier to see.

Both TCGA data tables (the red nodes) contain sample barcodes, allowing
information from each table that pertains to the same sample to be merged into
a single output row by a JOIN operation.
However, neither the copy-number nor the methylation table schemas include a
field with a gene symbol which is another common way to JOIN one molecular data
table to another.
Instead, the methylation annotation table (yellow node) can be used to find the
chromosomal coordinate for each methylation probe (by performing a JOIN operation
on the probe id), and then the chromosomal coordinate of the probe can be used to
find relevant copy-number segments in the copy-number table.

[image: ../../_images/meth-to-cn-map.png]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Hosted TCGA Data

All TCGA metadata is considered open-access. In other words, information about controlled-access data
files is open-access. Metadata can be obtained programmatically using the ISB-CGC programmatic API.

An overview of the TCGA data currently hosted on the ISB-CGC platform is provided in the two sections below.
The first section breaks the data down by access class (open vs controlled), and the second section breaks
it down by original source repository (DCC and CGHub).

	TCGA Data by Access Class

	TCGA Data by Source Repository

If you’re interested instead in what type of data is stored using which Google Cloud technologies,
you may be more interested in a different way of looking at how we’ve organized the data:

	The higher-level, open-access data is available as a series of standardized, curated BigQuery tables.

	The original data files (as uploaded from the original source repositories) are available in Google Cloud Storage.

Each of the following sections describes these three data resources in more detail:

	Data in BigQuery

	Data in Cloud Storage

	Data in Google Genomics

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

ISB-CGC “Cloud Credits” Available for Researchers

To facilitate the use and evaluation of the Institute for Systems Biology Cancer Genomics Cloud
(ISB-CGC) Pilot, NCI-funded “Google cloud credits” are available to researchers to cover compute and storage costs associated with using the ISB-CGC platform and resources.

The table below describes the four user spending tiers.

	Tier

	Amount

	Description

	Requirements / Expectations

	1

	$300

	Google free trial [https://cloud.google.com/free/] is available for new Google Cloud Platform (GCP) users

	If you cannot use the Google free trial, please request a GCP project

	2

	$1,000

	Available after initial new user credit has been depleted

	Provide details about project goals, expected costs, etc, and provide feedback to ISB-CGC team

	3

	Up to $10,000

	Available after tier 2 credit has been depleted to begin a large or collaborative project (two or more researchers working on a project together)

	Provide project details such as scientific goals, collaboration details, etc, and provide feedback

	4

	More than $10,000

	Available in exceptional cases, if researchers can justify the need for additional support

	Requires approval by NCI program office

Note that user-financed GCP projects have the same access to ISB-CGC-hosted data and resources,
(subject to the NIH data-access restrictions) as ISB-CGC funded GCP projects. (The same is
true, of course for the GCP projects started under the Google free-trial program.)

For each of the four ISB-CGC credit tiers above, the ISB-CGC team will coordinate directly with
individual researchers as needed. For tier 3 (and 4) projects, the ISB-CGC team will work
closely with researchers in order to optimize efficiency and minimize costs. In addition,
researchers are strongly encouraged to make workflows, software, and related documentation
publicly available to benefit the broader research community. (This could be in the form
of a bioarxiv manuscript, a blog post, open-source software on github, etc.)

The ISB-CGC team also encourages researchers wishing to run large-scale projects to apply for
NIH Commons Credits [https://datascience.nih.gov/BlogCommonsCreditsModelPilot].
Information about NIH conformant cloud providers will be forthcoming soon.

Important Notes

Since the ISB-CGC is a pilot effort, researchers should have no expectation that data or tools
will be maintained after the Cloud Pilots program ends on September 27, 2017.
If a researcher has used up their allocated “cloud credits”, but is still storing data in
Google Cloud Storage or BigQuery, it will be the researcher’s responsibility to arrange to
transfer this data user-funded GCP project.

Note also that if you take advantage of the Google free-trial program, we cannot
reimburse you for costs incurred after the $300 in Google-provided credits have been used,
if you have chosen to upgrade to a paid account.
All ISB-CGC provided “cloud credits” must be used within ISB-CGC provided GCP projects.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

How to Access BigQuery from the Google Cloud Platform

In order to use BigQuery, you must have access to a Google Cloud Platform (GCP) project.
You will also need a Google account identity (freely available with a new account or by linking to an existing email account).
If you have not logged into the Google Cloud Platform [http://cloud.google.com] you will be presented with this page:

[image: ../../../_images/SignIntoGCP.png]
You login through the Sign In link at the upper right of the initial page (label A in the image above). Also on this page are links to a free-trail on the Google Cloud Platform (B) and (C), a link to contact google for any issues regarding the google cloud platform (D), a link to more information about the Google Cloud platform (E).

Upon signing in with a Google account identity, you will be presented with the following page:

[image: ../../../_images/GCPDashboard.png]
This is your personal Dashboard where your compute engine (A), Google APIs(C), App Engine(D), BigQuery, and Cloud Storage (F) components are readily accessible. Google also provides documentation for additional information if needed (E). Additional documentation describing how to use each component of this user interface are provided in the individual subsections of this documentation.
We encourage you to try the risk free trial(H). Once you have a GCP project, you will have access to all of the products and services that make up the Google Cloud.

Google products and services may also be accessed through (G). Scroll down to BigQuery and open it (see screenshot below).

[image: ../../../_images/BigQuerySelect.png]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Linking BigQuery to ISB-CGC Project

To obtain access to the ISB-CGC project tables in BigQuery you must link these tables to your project so that they will show up in the left panel of your BigQuery web UI.

When you access BigQuery from your Google Cloud Platform Console (see link here for more information on this), you will be presented with the following page:

[image: ../../../_images/BlueArrowDropdown.png]
The blue arrow will produce a drop down list; select ‘Switch to Project’; then click ‘display project…’

You will then be presented with the following page:

[image: ../../../_images/AddISB-CGCProject.png]
As shown in the image above you will need to type in “isb-cgc” in the project id and then click okay.

Once this has been completed you will see all of the BigQuery datasets made public by the ISB-CGC project on the left hand side above public data sets (see screenshot below).

[image: ../../../_images/ISB-CGCBiqQueryDatasets.png]

Other Genomics BigQuery Data Available on Google

Google and others have made additional datasets available in BigQuery. These can be used in joins with the ISB-CGC datasets. The current list can be found here [https://googlegenomics.readthedocs.org/en/latest/use_cases/discover_public_data/index.html].

It is possible that not all the datasets provided on this page have BigQuery data. You can find that out by opening up that link for each dataset and seeing if there is a section called “Google BigQuery Dataset ID(s)”. If there is, you can make these available through your Google console by the same process as you did for the ISB-CGC datasets above or by clicking on the link for that dataset.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Walk Through of Google BigQuery

This will serve as a guide to navigate through the Google web-interface for BigQuery and do some introductory queiries using ISB-CGC hosted TCGA data. For those who would rather use R or Python to programmatically interact with BigQuery, detailed tutorials are provided here [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/sections/progapi/Tutorials.html].

Gaining Access

Please refer to documentation on how to access BigQuery from the Google Console if you have not done this before.

Also to add ISB-CGC data to your BigQuery platform please refer to the documentaion for linking ISB-CGC data to BigQuery in the Google Console.

ISB-CGC Data Sets in BigQuery

Below are the list of ISB-CGC hosted data sets that can be accessed once you have linked your platform to the ISB-CGC project.

	isb-cgc:ccle_201602_alpha

This dataset has been created and curated by the ISB-CGC project to be used in conjunction with the TCGA and other datasets currently hosted by the ISB-CGC. For more information about the ISB-CGC, please see our documentation on readthedocs. [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/]

This specific dataset contains data from the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) project and is being redistributed with permission from the Broad Institute.

Neither the CCLE project nor the Broad institute are responsible for any errors that may have been made when creating these tables. For more information about the CCLE project and to access the original datasets, please refer to the CCLE website. [http://www.broadinstitute.org/ccle/home]

	isb-cgc:genome_reference

This dataset contains reference tables that have been compiled by the ISB-CGC team from publicly available sources. Please see each table for details about the source of the information contained in that table.

	isb-cgc:platform_reference

This dataset contains platform reference tables that have been compiled by the ISB-CGC team from publicly available sources. Specifically, these tables are used as additional annotation for data from results provided by instrumentation used in the TCGA project to collect data.

	isb-cgc:tcga_201607_beta

This set of BigQuery tables was produced by the ISB-CGC project, based on the open-access TCGA data available at the TCGA Data Portal as of October 2015. For more information, see here for more details [https://github.com/isb-cgc/examples-Python/blob/master/notebooks/The%20ISB-CGC%20open-access%20TCGA%20tables%20in%20BigQuery.ipynb] or e-mail info@isb-cgc.org .

	isb-cgc:tcga_cohorts

This dataset contains individual “cohort” tables for each of the TCGA tumor types, as well as a single table in which all of these tables have been concatenated. To be included in this list, there must be at least some molecular data available for each sample, and there must not be any disqualifying annotations for either the patient or the sample.

These cohort tables were created based on the isb-cgc:tcga_201607_beta dataset and are provided as a resource to the research community by the ISB-CGC.

	isb-cgc:tcga_seq_metadata

This dataset contains metadata and FastQC metrics for thousands of TCGA DNA-seq and RNA-seq data files:

	CGHub_Manifest table contains metadata for all TCGA files at CGHub as of April 27th, 2016

	GCS_listing_27apr2016 table contains metadata for all TCGA files hosted by ISB-CGC in GCS

	RNAseq_FastQC table contains metrics derived from FastQC runs on the RNAseq data files, including urls to the FastQC html reports that you can cut and paste directly into your browser

	WXS_FastQC table contains metrics derived from FastQC runs on the exome DNAseq data files

Syntax Queries Examples

Below are some sample queries that will get you started using BigQuery and these ISB-CGC datasets for your own analyses. One easy way is to use the BigQuery web UI (see screenshot below). See Google’s BigQuery Web UI Tutorial [https://developers.google.com/bigquery/docs/hello_bigquery_gui] for more general details of how to use this tool.

The examples below show the question that is being asked, and an example BigQuery SQL syntax that can be used to find the answer. Try it yourself by pasting the query into your own instance of the BigQuery web UI.

Getting information from one table

Q: Find all THCA participants with UNC HiSeq gene expression data for the ARID1B gene

SELECT
 ParticipantBarcode, Study, original_gene_symbol, HGNC_gene_symbol, gene_id
FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
WHERE
 original_gene_symbol = 'ARID1B'
AND
 STUDY = 'THCA' LIMIT 100

[image: ../../../_images/BigQueryExample1Query.PNG]

Getting information from more than one table (Joining)

Q: For bladder cancer patients that have mutations in the CDKN2A (cyclin-dependent kinase inhibitor 2A) gene, what types of mutations are they, what is their gender, vital status, and days to death - and for 3 downstream genes (MDM2 (MDM2 proto-oncogene), TP53 (tumor protein p53), CDKN1A (cyclin-dependent kinase inhibitor 1A)), what are the gene expression levels for each patient?

This question was chosen as an interesting example because the p53/Rb pathway is commonly involved in bladder cancer (see TCGA Network paper [https://tcga-data.nci.nih.gov/docs/publications/blca_2013/] “Comprehensive Molecular Characterization of Urothelial Bladder Carcinoma”, Figure 4).

This is a complex question that requires information from four tables. We will build up this complex query in three stages.

Stage 1

Finding the patients with bladder cancer that have mutations in the CDKN2A gene, and displaying the patient ID and
the type of mutation

SELECT
 mutation.ParticipantBarcode,
 mutation.Variant_Type
FROM
 [isb-cgc:tcga_201607_beta.Somatic_Mutation_calls] AS mutation
WHERE
 mutation.Hugo_Symbol = 'CDKN2A'
 AND Study = 'BLCA'
GROUP BY
 mutation.ParticipantBarcode,
 mutation.Variant_Type
ORDER BY
 mutation.ParticipantBarcode

[image: ../../../_images/BigQueryExample2Query.PNG]
We now have the list of patients that have a mutation in the CDKN2A gene and the type of mutation.

Notice that we have named the “isb-cgc:tcga_201607_beta.Somatic_Mutation_calls” table “mutation” using the AS statement. This is useful for easier reading and composing of complex queries.

Stage 2

Bringing in the patient data from the ISB-CGC TCGA Clinical table so that we can see each patient’s gender, vital status and days to death.

SELECT
 patient_list.mutation.ParticipantBarcode AS ParticipantBarcode,
 patient_list.mutation.Variant_Type AS Variant_Type,
 clinical.gender,
 clinical.vital_status,
 clinical.days_to_death
FROM
 /* this will get the unique list of patients having the TP53 gene mutation in BRCA patients*/ (

 SELECT
 mutation.ParticipantBarcode,
 mutation.Variant_Type
 FROM
 [isb-cgc:tcga_201607_beta.Somatic_Mutation_calls] AS mutation
 WHERE
 mutation.Hugo_Symbol = 'CDKN2A'
 AND Study = 'BLCA'
 GROUP BY
 mutation.ParticipantBarcode,
 mutation.Variant_Type
 ORDER BY
 mutation.ParticipantBarcode,
) AS patient_list /* end patient_list */
JOIN
 [isb-cgc:tcga_201607_beta.Clinical_data] AS clinical
ON
 patient_list.ParticipantBarcode = clinical.ParticipantBarcode

[image: ../../../_images/BigQueryExample3Query.PNG]
We now have combined information from two tables through a join. Notice in particular the join syntax,
and the fact that
for the join (inner join by default), the fields that are identiical between the mutation table and the clinical table is “ParticipantBarcode”.

Stage 3

Show the gene expression levels for the 4 genes of interest, and order them by patient id (Participant Barcode) and gene name (HGNC_gene_symbol).

SELECT
 genex.ParticipantBarcode AS ParticipantBarcode,
 genex.SampleBarcode AS SampleBarcode,
 genex.AliquotBarcode AS AliquotBarcode,
 genex.HGNC_gene_symbol AS HGNC_gene_symbol,
 patient_list.Variant_Type AS Variant_Type,
 genex.gene_id AS gene_id,
 genex.normalized_count AS normalized_count,
 genex.Study AS Study,
 clinical_info.clinical.gender AS gender,
 clinical_info.clinical.vital_status AS vital_status,
 clinical_info.clinical.days_to_death AS days_to_death
FROM (/* This will get the clinical information for the patients*/
 SELECT
 patient_list.mutation.Variant_Type AS Variant_Type,
 patient_list.mutation.ParticipantBarcode AS ParticipantBarcode,
 clinical.gender,
 clinical.vital_status,
 clinical.days_to_death
 FROM
 /* this will get the unique list of patients having the CDKN2A gene mutation in bladder cancer BLCA patients*/ (

 SELECT
 mutation.ParticipantBarcode,
 mutation.Variant_Type
 FROM
 [isb-cgc:tcga_201607_beta.Somatic_Mutation_calls] AS mutation
 WHERE
 mutation.Hugo_Symbol = 'CDKN2A'
 AND Study = 'BLCA'
 GROUP BY
 mutation.ParticipantBarcode,
 mutation.Variant_Type
 ORDER BY
 mutation.ParticipantBarcode,
) AS patient_list /* end patient_list */
 INNER JOIN
 [isb-cgc:tcga_201607_beta.Clinical_data] AS clinical
 ON
 patient_list.ParticipantBarcode = clinical.ParticipantBarcode /* end clinical annotation */) AS clinical_info
INNER JOIN
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM] AS genex
ON
 genex.ParticipantBarcode = patient_list.ParticipantBarcode
WHERE
 genex.HGNC_gene_symbol IN ('MDM2',
 'TP53',
 'CDKN1A',
 'CCNE1')
ORDER BY
 ParticipantBarcode,
 HGNC_gene_symbol

[image: ../../../_images/BigQueryExample4Query.PNG]
We have now gotten all the data together in one table for further analysis.

Note that the final join surrounds the previous join top and bottom. This is common method of doing joins.

You can either download the results from a query in either CV or JSON format, or save it for further analysis in Google BigQuery by the “Save as Table” button. As the next section describes, large queries continuing to combine multiple tables in a gene query may be limited by cost and resources, saving results as intermediate tables is a solution to these issues.

Saving Query Results in other BigQuery Tables

You can easily save Query results in intermediate tables in your project, allowing others to view and use them. Details from Google on how to do that is here [https://cloud.google.com/bigquery/bigquery-web-ui]. If your query gets too complex it can take too long to run. Creating intermediate result tables can be a good approach to obtain the same result more quickly and at a lower cost.

For Additional Google Support

Google provides its users with a detailed explanation of BigQuery and how it works.

-https://cloud.google.com/bigquery/what-is-bigquery

Google also provides a query reference guide

-https://cloud.google.com/bigquery/query-reference

Important Note

Here [https://cloud.google.com/bigquery/pricing] is information about how much does it costs to use BigQuery. Queries are billed according to how much data is scanned during the course of the query, and the rate is $5 per TB, although the first 1 TB is free each month.
You can keep an eye on your GCP expenses on your Google Cloud Platform Console home page [https://console.cloud.google.com/home/dashboard].

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

BigQuery SQL Tutorial

Exploring the TCGA data in BigQuery

The ISB-CGC team has aggregated and curated the TCGA
open-access clinical, biospecimen, and Level-3 molecular data and uploaded it
into BigQuery tables that are open to the public. Additional tables have been
added to open up new analysis options.

In this tutorial, we will show you how you can begin to work with these tables
from the Google BigQuery Web UI. Note that in order to use BigQuery,
you must have access to (ie be a member of) a GCP project.

Helpful BigQuery links

For this example, we’ll be working in the Google BigQuery Web UI [https://bigquery.cloud.google.com].

We’ve tried to simplify what you need to know to get started using the ISB-CGC BigQuery
tables in this quick
visual walkthrough [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf].

It’s often helpful to have a link to the docs [https://cloud.google.com/bigquery/what-is-bigquery] handy,
and especially the query reference [https://cloud.google.com/bigquery/query-reference].
(You’ll probably want to open those into new tabs of your browser, for easy access.)

Let’s query!

In your browser, go to the BigQuery Web UI [https://bigquery.cloud.google.com]

On the left side, from top to bottom we have:

	Compose Query This button opens the New Query text box, where we can write queries.

	Query History A list of your past queries… very useful.

	Job History A list of past jobs (eg copying or creating tables).

	Your Project Datasets Click the little blue triangle to create a new dataset or change projects.

	isb-cgc Publicly accessible ISB-CGC curated datasets (including TCGA and reference data sources).

	More data! Other added datasets will appear here (for example, the genomics-public-data, etc).

Note: if you do not see the isb-cgc datasets, you need to add them to your “view” by clicking on the blue arrow next to your project name at the top of the left side-bar, select “Switch to Project”, then “Display Project…”, and enter “isb-cgc” (without quotes) in the text box labeled “Project ID”. All ISB-CGC public BigQuery datasets and tables will now be visible in the left side-bar of the BigQuery web interface. You can repeat this process for other public datasets.

Querying: Lists, Joins, and Subqueries

BigQueries are very similar to regular SQL, but with some differences. (Note: you can now enable standard SQL [https://cloud.google.com/bigquery/sql-reference/enabling-standard-sql] in BigQuery.)

Typically, we select some variables (aka “fields”) from one or more tables, filter on some criteria,
and occasionally aggregate the results (such as taking an average).

In this first simple example, we are asking for the
barcodes for all patients in the CESC and HNSC
studies, with an associated “primary solid tumor” sample. Note the use of the IN keyword.

SELECT
 Study,
 ParticipantBarcode,
 SampleType
FROM
 [isb-cgc:tcga_201607_beta.Biospecimen_data]
WHERE
 Study IN ('CESC', 'HNSC')
 AND SampleType = 'Primary solid Tumor'

Go ahead and cut and paste the above query directly into the New Query box,
and then click the red Run Query button.

Next, let’s suppose we want to bring in some information that is available in the Clinical_data table.
To do this we need to JOIN the clinical and biospecimen tables using the SQL … JOIN … ON … construct.

SELECT
 b.ParticipantBarcode,
 a.SampleBarcode,
 a.Study,
 a.SampleType,
 a.avg_percent_tumor_cells,
 b.hpv_status
FROM (
 SELECT
 ParticipantBarcode,
 SampleBarcode,
 Study,
 SampleType,
 avg_percent_tumor_cells
 FROM
 [isb-cgc:tcga_201607_beta.Biospecimen_data]
 WHERE
 Study IN ('CESC',
 'HNSC')
 AND SampleType='Primary solid Tumor') AS a
JOIN (
 SELECT
 ParticipantBarcode,
 hpv_status
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]) AS b
ON
 a.ParticipantBarcode = b.ParticipantBarcode
GROUP BY
 b.ParticipantBarcode,
 a.SampleBarcode,
 a.Study,
 a.SampleType,
 a.avg_percent_tumor_cells,
 b.hpv_status

If you’re really paying attention, you might notice that the first query returned
836 participant barcodes from the Biospecimen_data table, but the second one returned only
835 participant and sample barcodes. In a few cases, the Biospecimen_data table
contains information about samples that have no associated information in the Clinical_data
table, and the “JOIN” operation is by default an INNER JOIN which returns only the
intersection of the two tables being joined.

Another way to work with multiple tables is by using subqueries.
In the example below, we have an inner query (the middle
seven lines set off by blank space) which creates a “cohort” on the fly,
filtering by study and HPV status from the Clinical_data table.
We then use that sub-table to filter the Biospecimen_data table,
where we compute the average of the percent tumor cells, also counting
how many rows went into each average, grouped according to SampleType,
and then finally we sort by n.

SELECT
 Study,
 SampleType,
 AVG(avg_percent_tumor_cells) AS avgPctTumor,
 COUNT(*) AS n
FROM
 [isb-cgc:tcga_201607_beta.Biospecimen_data]
WHERE
 ParticipantBarcode IN (

 SELECT
 ParticipantBarcode
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]
 WHERE
 hpv_status = 'Positive'
 AND Study IN ('CESC', 'HNSC')

)
GROUP BY
 Study,
 SampleType
ORDER BY
 n DESC

Computing Statistics

A beneficial goal is to keep as much computation on the BigQuery side
as possible. That means we want to aggregate and compute functions that
return summary data.

In this query, we’re going to look at some summary statistics in the
clinical table.

SELECT
 ParticipantBarcode,
 Study,
 gender,
 country,
 number_pack_years_smoked,
 (number_pack_years_smoked - mu) / sd AS z
FROM
 [isb-cgc:tcga_201607_beta.Clinical_data] AS a
JOIN (
 SELECT
 vital_status,
 AVG(number_pack_years_smoked) AS mu,
 STDDEV(number_pack_years_smoked) AS sd
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]
 WHERE
 vital_status = 'Alive'
 GROUP BY
 vital_status) AS b
ON
 a.vital_status = b.vital_status
ORDER BY
 z DESC

The results from this query are ordered by Z score

After running a query, there are several options in the bottom Results panel.
You can get an “Explanation” showing how the query was broken into multiple Stages,
the number of input and outputs from each stage, and the amount of time spent
reading, computing, etc. In addition, you can Download or Save the Results in various ways,
including as a new BigQuery Table.
If your query will return a large number of results, you may need to click the
Show Options button to the right of the Run Query button and specific a
“Destination Table” and then turn on the “Allow Large Results” option.

Making Summary Tables

Another way to create summary information is by creating tables of counts as shown below.
With summary tables, we can even compute statistics like a ChiSq.

SELECT
 table_cell,
 COUNT(*) AS n
FROM (
 SELECT (
 CASE
 WHEN gender = 'MALE' AND hpv_status = 'Positive' THEN 'Male_and_HPV_Pos'
 WHEN gender = 'MALE' AND hpv_status = 'Negative' THEN 'Male_and_HPV_Neg'
 WHEN gender = 'FEMALE' AND hpv_status = 'Positive' THEN 'Female_and_HPV_Pos'
 WHEN gender = 'FEMALE' AND hpv_status = 'Negative' THEN 'Female_and_HPV_Neg'
 ELSE 'None'
 END) AS table_cell,
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]
 WHERE
 Study IN ('CESC',
 'HNSC')
 HAVING
 table_cell <> 'None')
GROUP BY
 table_cell
ORDER BY
 n DESC

LiftOver from hg19 to hg38

Suppose you want to work with the newer hg38 reference. We can use BigQuery to
perform the liftOver operation on the methylation probe coordinates using a
simple JOIN query. (This query takes approx 25s and produces an output table
with one row for each of the input rows in the input annotation table.)

SELECT
 a.probeID AS Illumina_probeID,
 a.hg19_chr AS hg19_chr,
 a.hg19_pos AS hg19_pos,
 b.hg38_chr AS hg38_chr,
 b.hg38_pos AS hg38_pos
FROM (
 SELECT
 IlmnID AS probeID,
 CHR AS hg19_chr,
 MAPINFO AS hg19_pos
 FROM
 [isb-cgc:platform_reference.methylation_annotation]) a
LEFT OUTER JOIN EACH (
 SELECT
 LTRIM(hg19_ref,"chr") AS hg19_chr,
 hg19_pos,
 LTRIM(hg38_ref,"chr") AS hg38_chr,
 hg38_pos
 FROM
 [isb-cgc:genome_reference.liftOver_hg19_to_hg38]) b
ON
 a.hg19_chr=b.hg19_chr
 AND a.hg19_pos=b.hg19_pos

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Introduction to the Google Cloud Platform

TODO: link to slide deck

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Integrative Analysis Tutorial

This tutorial is intended to guide you through several different components of the ISB-CGC platform
and some of the different ways that you can approach working with the data that is available in
Google Cloud Storage, BigQuery, and Google Genomics.

In this example, we will study the potential effects of HPV integration on the
expression of recurrent target genes in CESC and HNSC tumors. This example
demonstrates the use of BigQuery and R to query multiple tables across
multiple data sets. We will also show users how to bring in their own data to
use in conjunction with the TCGA data already available as BigQuery tables. In
this exercise, we will (loosely) reproduce a figure from Tang et. al.,
visualizing altered expression of host genes frequently targeted by HPV.

References:
Tang et. al. The landscape of viral expression and host gene fusion and adaptation in human cancer.
Nature Communications 4, Article number:2513|doi:10.1038/ncomms3513

	Web Application Analysis Tutorial

	Analysis with R

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Introduction, Workshop Goals, and System Overview

TODO: link to slide deck

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Web Application Analysis Tutorial

This tutorial will be conducted live and allow you to follow along. If you get lost or would like to review what was covered,
you may download this pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp.pdf].

Other useful Tutorials

	Linking your NIH and Google Identities [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-TCGA-Contolled-Access-Data.html?#linking-your-nih-and-google-identities]

	IGV Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_IGV.pdf])

	SeqPeek Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_SeqPeek.pdf])

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Analysis with R

Differential gene expression associated with HPV integration

In this example, we will study the potential effects of HPV integration on the
expression of recurrent target genes in CESC and HNSC tumors. This example
demonstrates using R to issue BigQuery queries involving multiple tables across
multiple data sets. We will also show users how to bring in their own data to
use in conjunction with the TCGA data already available as BigQuery tables. In
this exercise, we will reproduce some figures from Tang et. al. [1] to visualize
altered expression of host genes frequently targeted by HPV.

References:
Tang et. al. The landscape of viral expression and host gene fusion and adaptation in human cancer.
Nature Communications 4, Article number:2513|doi:10.1038/ncomms3513

Loading libraries

require(bigrquery,quietly = TRUE) || install.packages('bigrquery',verbose = FALSE)
require(httpuv, quietly = TRUE) || install.packages('httpuv',verbose=FALSE)
require(ggplot2,quietly = TRUE) || install.packages('ggplot2',verbose = FALSE)

Your project ID

You will be using your own project ID. At certain points in the code, it will
be necessary to complete the code.

main_cloud_project = "isb-cgc"
my_cloud_project = "your_project_id"
tcga_data_set = "tcga_201607_beta"

First query

Now let’s see if things are working.

bigrquery::list_tables(main_cloud_project, tcga_data_set)

In this tutorial, we will be investigating two studies using two existing
BigQuery tables. Additionally, we’re going to BYOD “Bring your own data”.

study=c('CESC','HNSC')

clinical_table = "[isb-cgc:tcga_201607_beta.Clinical_data]"

Constructing Queries

One of the great things about working in a scripting environment, is that our
analysis – the queries – we write, can be constructed programmatically.
That makes it easy to apply the same structured queries to many questions.
In the next code block is an example of how to do that.

sqlQuery = paste("SELECT ParticipantBarcode, Study, hpv_calls, hpv_status ",
 "FROM ", clinical_table,
 " WHERE Study in (",paste(shQuote(study),collapse = ','),")",sep="")

sqlQuery

hpv_table = query_exec(sqlQuery,project = my_cloud_project)

dim(hpv_table)

head(hpv_table)

We can do some quality control ...
Assert that if hpv_calls is NA, hpv_status is Negative
stopifnot((is.na(hpv_table$hpv_calls) && hpv_table$hpv_status=="Negative") || !is.na(hpv_table$hpv_calls))

Let's explore the cohort
ggplot(data=hpv_table, aes(x=hpv_status, fill=Study)) + geom_bar(stat="count", position=position_dodge())

Uploading Data

The exact location of HPV integration is not available in the TCGA data,
so instead we’ll get a list of frequently targeted genes that was published
with this paper:

Ka-Wei Tang et. al. The Landscape of viral expression and host gene fusion and adaptation in human cancer. doi:10.1038/ncomms3513

(Supplementary Data 2: Integration analysis results)

We will access the data from our workshop bucket using the command line or from
the Google Cloud Console. Using the cloud console, go to https://console.cloud.google.com and find the
workshop bucket.

Using the google command line tool:

gsutil cp gs://isb-cgc-workshop/data/Larsson/ncomms3513-s3.tsv .
gsutil cp gs://isb-cgc-workshop/data/Larsson/ncomms3513-s3_Schema.json .

Now the data is in our directory, but we need to transform it into a BQ table.
To do that, we need to create a data set in our project. We can do this from within the BigQuery
web UI by clicking on the little blue triangle next to your project ID on the left.
Or we can do this on the command line using the bq command line tool.

gcloud init

bq help

bq ls

bq mk workspace

bq load --source_format CSV --field_delimiter "\t" --schema ncomms3513-s3_Schema.json workspace.ncomms3513_s3 ncomms3513-s3.tsv

Integrating with the expression data

Now we can directly query our own data, and start to combine it with other tables.
Let’s try it out!

This next query is going to select the genes that were associated with HPV
integration in CESC and HNSC tumors.

sqlQuery = "
SELECT
 Overlapping_genes,
 Cancer
FROM
 [isb-cgc-04-0030:workspace.ncomms3513_s3]
WHERE
 Cancer IN ('CESC','HNSC')
 AND Overlapping_genes <> 'Intergenic'
GROUP BY
 Cancer,
 Overlapping_genes
 "

affected_genes = query_exec(sqlQuery,project = my_cloud_project)

head(affected_genes)

table(affected_genes$Cancer)

Next, with those offen affected genes, we will query gene expression data.

query <- "
SELECT
 Study,
 HGNC_gene_symbol,
 AVG(normalized_count) as mean_expression
FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
WHERE
 Study IN ('CESC','HNSC')
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol IN (
 SELECT
 Overlapping_genes AS HGNC_gene_symbol
 FROM
 [isb-cgc-04-0030:workspace.ncomms3513_s3]
 WHERE
 Cancer IN ('CESC','HNSC')
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 HGNC_gene_symbol)
GROUP BY
 Study,
 HGNC_gene_symbol
ORDER BY
 mean_expression"

running the query.
mean_affected_genes = query_exec(query, project = my_cloud_project)

we'll create some more meaningful x-axis labels
mean_affected_genes$xlabel <- paste0(mean_affected_genes$Study, "_", mean_affected_genes$HGNC_gene_symbol)

Now we can visualize it.
qplot(data=mean_affected_genes,
 x=factor(x = xlabel, ordered = T, levels = xlabel),
 y=mean_expression,
 col=Study) +
 theme(axis.text.x = element_text(angle = 90, hjust = 1, size=4)) +
 xlab("Study_Gene")

Computing Statistics

Instead, if we want to get the actual gene expression values, we could query
for that, and retrieve it as a data.frame.

sqlQuery = "
SELECT
 ParticipantBarcode,
 SampleBarcode,
 Study,
 HGNC_gene_symbol,
 normalized_count
FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
WHERE
 Study IN ('CESC','HNSC')
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol IN (
 SELECT
 Overlapping_genes as HGNC_gene_symbol
 FROM
 [your-project-id:workspace.ncomms3513_s3]
 WHERE
 Cancer IN ('CESC','HNSC')
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 HGNC_gene_symbol)
 "

gexp_affected_genes = query_exec(sqlQuery,project = my_cloud_project)

#view results
head(gexp_affected_genes)

a couple different ways to look at the results
#qplot(data=gexp_affected_genes, x=Study, y=normalized_count, col=HGNC_gene_symbol, geom="boxplot")
#qplot(data=gexp_affected_genes, x=Study, y=log2(normalized_count), col=HGNC_gene_symbol, geom="boxplot")
qplot(data=gexp_affected_genes, x=log2(normalized_count+1), col=HGNC_gene_symbol, geom="density") + facet_wrap(~ Study)

Not all the samples listed in the clinical data have gene expression data, however.
Let’s filter the hpv_table to match the samples to those in gexp_affected_genes

require(tidyr,quietly = TRUE) || install.packages('tidyr',verbose = FALSE)
require(dplyr,quietly = TRUE) || install.packages('dplyr',verbose = FALSE)
require(broom,quietly = TRUE) || install.packages('broom',verbose = FALSE)

let's get rid of 'indeterminate' samples
hpv_table = dplyr::filter(hpv_table, hpv_status != "Indeterminate", ParticipantBarcode %in% gexp_affected_genes$ParticipantBarcode)

T-tests

Now, we are going to perform t.tests on expression by hpv_status and study.

gxps <- merge(x=gexp_affected_genes, y=hpv_table, by=c("Study","ParticipantBarcode"))

Performing a t-test between hpv+ and hpv- by study and gene
res0 <- gxps %>%
group_by(Study, HGNC_gene_symbol) %>%
do(tidy(t.test(log2(normalized_count+1) ~ hpv_status, data=.))) %>%
ungroup() %>%
arrange(desc(statistic))

These are the top 5 results ...
top5 <- select(top_n(res0, 5, statistic), Study, HGNC_gene_symbol)

Let's subset the data by the top 5 results...
res1 <- merge(x=top5, y=gxps) %>% mutate(Study_Gene = paste0(Study, "_", HGNC_gene_symbol))

now we can plot the results...
ggplot(res1, aes(x=Study_Gene, y=log2(normalized_count+1), fill=hpv_status)) + geom_boxplot()

Making BigQueries

Previously, we downloaded data and performed some work on it. But another way to work
is to compute as much as possible in the cloud, and use R to visualize summary results.

Please see: https://cloud.google.com/bigquery/query-reference

sqlQuery = "
SELECT
 ParticipantBarcode,
 SampleBarcode,
 Study,
 HGNC_gene_symbol,
 normalized_count
FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
WHERE
 Study = 'CESC'
 AND SampleTypeLetterCode = 'TP'
 AND ParticipantBarcode IN (
 SELECT
 ParticipantBarcode
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]
 WHERE
 hpv_status = 'Positive')
 AND HGNC_gene_symbol IN (
 SELECT
 Overlapping_genes AS HGNC_gene_symbol
 FROM
 [isb-cgc-04-0002:testVarsha.ncomms3513_s3]
 WHERE
 Cancer = 'CESC'
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 HGNC_gene_symbol)
"

q1 = query_exec(sqlQuery,project = cloud_project_workshop)

dim(q1)

Now lets make a small change, and get gene expression for subjects that are hpv negative.

sqlQuery = "
SELECT
 ParticipantBarcode,
 SampleBarcode,
 Study,
 HGNC_gene_symbol,
 normalized_count
FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
WHERE
 Study = 'CESC'
 AND SampleTypeLetterCode = 'TP'
 AND ParticipantBarcode IN (
 SELECT
 ParticipantBarcode
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]
 WHERE
 hpv_status = 'Negative')
 AND HGNC_gene_symbol IN (
 SELECT
 Overlapping_genes AS HGNC_gene_symbol
 FROM
 [isb-cgc-04-0030:workspace.ncomms3513_s3]
 WHERE
 Cancer = 'CESC'
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 HGNC_gene_symbol)
"

q2 <- query_exec(sqlQuery,project = cloud_project_workshop)

dim(q2)

Now we merge the previous two queries, and compute T statistics using
BigQuery built in functions, SQRT, MEAN, STDDEV, POW, COUNT, and LOG2.

Please see: https://cloud.google.com/bigquery/query-reference

q <- "
SELECT
 p.HGNC_gene_symbol AS gene,
 p.study AS study,
 p.x AS x,
 p.sx2 AS sx2,
 p.nx AS nx,
 o.y AS y,
 o.sy2 AS sy2,
 o.ny AS ny,
 (p.x-o.y) / SQRT((p.sx2/p.nx) + (o.sy2/o.ny)) AS T
FROM (

 # first the gene expression summaries for hpv+ tumors
 SELECT
 Study,
 HGNC_gene_symbol,
 AVG(LOG2(normalized_count+1)) AS y,
 POW(STDDEV(LOG2(normalized_count+1)),2) AS sy2,
 COUNT(ParticipantBarcode) AS ny
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
 WHERE
 Study = 'CESC'
 AND SampleTypeLetterCode = 'TP'
 AND ParticipantBarcode IN (

 # selecting the patients... could also previously put this in a table
 SELECT
 ParticipantBarcode
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]
 WHERE
 hpv_status = 'Positive')
 AND HGNC_gene_symbol IN (

 # the list of associated genes
 SELECT
 Overlapping_genes AS HGNC_gene_symbol
 FROM
 [isb-cgc-04-0030:workspace.ncomms3513_s3]
 WHERE
 Overlapping_genes <> 'Intergenic'
 GROUP BY
 HGNC_gene_symbol)
 GROUP BY
 Study,
 HGNC_gene_symbol) AS o

JOIN (

 # Then we get the gene expression summaries from hpv-
 SELECT
 Study,
 HGNC_gene_symbol,
 AVG(LOG2(normalized_count+1)) AS x,
 POW(STDDEV(LOG2(normalized_count+1)),2) AS sx2,
 COUNT(ParticipantBarcode) AS nx
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
 WHERE
 Study = 'CESC'
 AND SampleTypeLetterCode = 'TP'
 AND ParticipantBarcode IN (
 SELECT
 ParticipantBarcode
 FROM
 [isb-cgc:tcga_201607_beta.Clinical_data]
 WHERE
 hpv_status = 'Negative')
 AND HGNC_gene_symbol IN (

 # the list of associated genes
 SELECT
 Overlapping_genes AS HGNC_gene_symbol
 FROM
 [isb-cgc-04-0030:workspace.ncomms3513_s3]
 WHERE
 Overlapping_genes <> 'Intergenic'
 GROUP BY
 HGNC_gene_symbol)
 GROUP BY
 Study,
 HGNC_gene_symbol) AS p
ON
 p.HGNC_gene_symbol = o.HGNC_gene_symbol
 AND p.Study = o.Study
GROUP BY
 gene,
 Study,
 x,
 sx2,
 nx,
 y,
 sy2,
 ny,
 T
ORDER BY
 T DESC
 "

 t_test_result <- query_exec(q, project = cloud_project_workshop)

 head(t_test_result)

and we can see the same results in the previously done work.
 res0

Extras

Transform gexp_affected_genes_df into a gexp-by-samples feature matrix

gexp_fm = tidyr::spread(gexp_affected_genes,HGNC_gene_symbol,normalized_count)

gexp_fm[1:5,1:5]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Analysis with R and BigQuery

Computing on the BigQuery side; making correlation matrices

In this example, we are going to compute a correlation matrix (or co-expression)
entirely on the BigQuery side. Since we’re in R-land, we can easily visualize
the matrix as a heatmap. We are also going to query for gene lists using
Gene Ontology annotation, and access the End Points API to get a list of samples.

Loading libraries

require(bigrquery, quietly = TRUE) || install.packages('bigrquery',verbose = FALSE)
require(httpuv, quietly = TRUE) || install.packages('httpuv',verbose=FALSE)
require(ggplot2, quietly = TRUE) || install.packages('ggplot2',verbose = FALSE)

The ISB-CGC R Examples Package

The collection of examples can be found at:
https://github.com/isb-cgc/examples-R

To install the package, we use the devtools package.

require(devtools, quietly = TRUE) || install.packages('devtools',verbose = FALSE)
require(ISBCGCExamples, quietly = TRUE) || install_github("isb-cgc/examples-R", build_vignettes=F)

If you needed to install any of the packages, remember, you still need to import it!

Your project ID

You will be using your own project ID. At certain points in the code, it will
be necessary to complete the code.

my_cloud_project = "your_project_id"
tcga_data_set = "tcga_201607_beta"

First query

Now let’s see if things are working.

bigrquery::list_tables("isb-cgc", tcga_data_set)

Using BigQuery to compute correlation matrices

A correlation matrix using gene expression is going to take the correlation
between each pair of genes. Usually, this matrix can then be clustered to
discover gene modules.

In this query, we’re going to use the BigQuery CORR function (one of the
many built-in mathematical functions) to compute a Pearson’s correlation.

You can find all the function information at:
https://cloud.google.com/bigquery/query-reference

The general structure of the query is going to be:

select
 genes and correlation
from
 subtable with genes and samples of interest
joined to
 same subtable of genes and samples

q <- "
SELECT
 a.HGNC_gene_symbol as gene1,
 b.HGNC_gene_symbol as gene2,
 CORR(a.normalized_count, b.normalized_count) as corr
FROM (
 SELECT
 *
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_RSEM]
 WHERE
 HGNC_gene_symbol IN ('APLN','CCL26','IL19','IL37')
 AND Study = 'COAD'
 AND SampleTypeLetterCode = 'TP'
) AS a
JOIN (
 SELECT
 *
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_RSEM]
 WHERE
 HGNC_gene_symbol IN ('APLN','CCL26','IL19','IL37')
 AND Study = 'COAD'
 AND SampleTypeLetterCode = 'TP'
) AS b
ON
 a.AliquotBarcode = b.AliquotBarcode
 AND a.Platform = b.Platform
GROUP BY
 gene1,
 gene2"

corrs <- query_exec(q,my_cloud_project)

transform to a matrix, and give it rownames
library(tidyr)
corrmat <- spread(corrs, gene1, corr)
rownames(corrmat) <- corrmat$gene2

visualize the matrix
library(pheatmap)
pheatmap(corrmat[,-1])

It’s easy to make a couple changes to this query, enabling a correlation
matrix per study. Try it!

Getting a list of high variance genes

When we make queries from R, the results come back as a data.frame.
Let’s use the GO annotation, and get a list of genes that are
related to the immune system. The GO Annotation table is found
in the genome_reference data set, and GO:0006955 references the
immune response.

q <- "
select
 DB_Object_Symbol
from
 [isb-cgc:genome_reference.GO_Annotations]
where
 GO_ID = 'GO:0006955'"

query_exec(q, my_cloud_project)

That query returns 472 genes. But let’s suppose we want the top 50 by
coefficient of variance.

q <- "
SELECT
 HGNC_gene_symbol,
 STDDEV(normalized_count+1) / AVG(normalized_count+1) AS cv
FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_RSEM]
WHERE
 HGNC_gene_symbol IN (
 SELECT
 DB_Object_Symbol
 FROM
 [isb-cgc:genome_reference.GO_Annotations]
 WHERE
 GO_ID = 'GO:0006955')
 AND Study = 'BRCA'
 AND SampleTypeLetterCode = 'TP'
GROUP BY
 HGNC_gene_symbol
ORDER BY
 cv DESC
LIMIT
 50"

result <- query_exec(q, my_cloud_project)
genes <- result$HGNC_gene_symbol

Now we have a list of genes that we can carry to further analysis.

Getting a list of samples from the endpoints

From R we can access the cohorts we created using the web app. To do that we
use the End Points API. The API is essentially a set of html requests. A
small wrapper is included as part of the isb-cgc examples-R package.

https://github.com/isb-cgc/examples-R/blob/master/inst/doc/Working_With_Barcode_Lists.md

To get started, import the ISBCGCExamples library.

library(ISBCGCExamples)

The first step is creating a token. This token contains your authentication status,
and lets the service know about what information is available to you.

my_token <- isb_init()

To get a listing of the previously created cohorts, we can use the list_cohorts
function that takes a token, and returns a list with items including
‘count’, ‘items’, ‘kind’, and ‘etag’. The count shows the number of saved
cohorts and the items contains information about the cohorts.

first get a list of my saved cohorts.
my_cohorts <- list_cohorts(my_token)
names(my_cohorts)

to get the names of my saved cohorts
lapply(my_cohorts$items, function(x) x$name)

Now that we have the cohort IDs, we can collect the various barcodes contained
in the cohort. These include patient barcodes, sample barcodes, and platform
specific aliquot barcodes. To do this, we can use the barcodes_from_cohort function.

HERE I’m using my cohort #4, but change this to whatever you have saved.

get the cohort IDs
my_cohort_id <- lapply(my_cohorts$items, function(x) x$id)[[4]]

then ping the endpoints with the cohort ID
my_barcodes <- barcodes_from_cohort(my_cohort_id, my_token)
names(my_barcodes)

The object returned from barcodes_from_cohort is again a list, this time with
elements ‘cohort_id’, ‘sample_count’, ‘patient_count’, ‘patients’, and ‘samples’.
The patients and samples elements are also lists, but lists of patients or sample barcodes.

samples <- unlist(my_barcodes$samples)
836 samples

Programmatically constructing Queries

One of the great things about working in a scripting environment, is that our
analysis – the queries – we write, can be constructed programmatically.
That makes it easy to apply the same structured queries to many questions.
But also we can incorporate long lists of samples or genes into a query.

#function for formatting lists..
sqf <- function(x) {
 paste("('",paste(x, collapse="','"),"')", sep="")
}

q <- paste("
SELECT
 a.HGNC_gene_symbol as gene1,
 b.HGNC_gene_symbol as gene2,
 CORR(a.normalized_count, b.normalized_count) as corr
FROM (
 SELECT
 *
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
 WHERE
 HGNC_gene_symbol IN ", sqf(genes), "
 AND SampleBarcode IN ", sqf(samples), "
 AND SampleTypeLetterCode = 'TP'
) AS a
JOIN (
 SELECT
 *
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
 WHERE
 HGNC_gene_symbol IN ", sqf(genes), "
 AND SampleBarcode IN ", sqf(samples), "
 AND SampleTypeLetterCode = 'TP'
) AS b
ON
 a.AliquotBarcode = b.AliquotBarcode
 AND a.Platform = b.Platform
GROUP BY
 gene1,
 gene2", sep=" ")

corrs <- query_exec(q,my_cloud_project)

transform to a matrix, and give it rownames
library(tidyr)
corrmat <- spread(corrs, gene1, corr)
rownames(corrmat) <- corrmat$gene2

visualize the matrix
library(pheatmap)
pheatmap(corrmat[,-1])

[image: alternate text]

From Lists to Matrices

Transform gexp_affected_genes_df into a gexp-by-samples feature matrix

gexp_fm = tidyr::spread(gexp_affected_genes,HGNC_gene_symbol,normalized_count)

gexp_fm[1:5,1:5]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

Workshop Wrap-Up

TODO: add wrap-up info, say a few things about Datalab and link to that material …

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

9/22 ISB-CGC Webinar - Using BigQuery with R

This tutorial will be conducted live and allow you to follow along.

The goal of this tutorial is to show you how to explore our BigQuery tables and answer any questions you might have.

It is also a useful time for us to gather feedback and learn what our users want to be able to do. So please come with your research questions and we can try to tackle them together.

Meeting Details

	Date

	September 22, 2016

	Time

	10:00 AM Pacific Time, 1:00 PM Eastern Time

	WebEx Link

	https://srameeting.webex.com/srameeting/j.php?MTID=m5612d723f442fb44e016bd58d2ea3920

	Audio Bridge

	1-800-747-5150, Access Code: 3201312 Global Conference Dial-In Numbers [https://conf.cfer.com/?an=8007475150&ac=3201312&startview=gos&login=true]

Topics

Cloud Console

First let’s start at the cloud console [https://console.cloud.google.com].

	Manage project settings : IAM link for permission settings

	Settings, project names

	Quotas, set maximum usage

	Buckets, used for bringing in large tables. (create / delete)

	CloudShell, can connect to a VM

BigQuery

BigQuery [https://bigquery.cloud.google.com]

BigQuery Reference [https://cloud.google.com/bigquery/query-reference]

	The browser interface

	query & job histories

	switching projects

	adding project to your workspace (silver-wall-555)

	making data sets.

	by saving queries

	New Tables

	CCLE (cancer cell line encyclopedia)

	https://portals.broadinstitute.org/ccle/home

	check out mutation calls, schema, details, preview

	GDC metadata for files https://gdc.cancer.gov/

	genome references

	tcga_201607_beta

	methylation by chr

	joined RNA-seq tables (mRNA_UNC_RSEM)

	joined miRNA tables (miRNA_Expression)

	isoform tables

	cohorts

	example queries [https://github.com/isb-cgc/readthedocs/blob/master/docs/include/big_query_examples.sql]

Using R

	getting set up. [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/GettingStartedWithR.html]

	the bigrquery library [https://github.com/rstats-db/bigrquery]

	the bigrquery CRAN page [https://cran.r-project.org/web/packages/bigrquery/index.html]

	bigrquery functions

	The examples-R github repo [https://github.com/isb-cgc/examples-R]

	installing the package

	tour of the package

	workshop doc v2 [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/workshop/Workshop_R_tut_v2.html]

	extra links

	advanced: using dplyr to make queries [https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html]

	workshop doc #1 [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/workshop/Workshop_R_tut.html]

Other useful Links

	DIY Workshop [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/DIYWorkshop.html] - Please look for the links under “ISB-CGC Open-Access BigQuery Tables.”

	Google BigQuery [https://cloud.google.com/bigquery/]

	Google Examples [https://support.google.com/analytics/answer/4419694?hl=en]

	Getting Started with R [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/GettingStartedWithR.html]

	Code examples can be found at our github repo. [https://github.com/isb-cgc/examples-R]

	BigQuery Workshop doc v2 [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/workshop/BQ_SQL_tut_v2.html]

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

9/13 Web Application Online Tutorial

This tutorial will be conducted live and allow you to follow along. If you get lost or would like to review what was covered, you may download this pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp.pdf].

The goal of this tutorial is to show you how to use the ISB-CGC Webapp [https://isb-cgc.appspot.com] and answer any questions you might have about it.

It is also a useful time for us to gather feedback and learn what our users want to be able to do. So please come with your research questions and we can try to tackle them together.

Meeting Details

	Date

	September 13, 2016

	Time

	10:00 AM Pacific Time, 1:00 PM Eastern Time

	WebEx Link

	https://srameeting.webex.com/srameeting/j.php?MTID=mec27d39212a3d7f98913c83d0c379909

Other useful Tutorials

	Linking your NIH and Google Identities [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-TCGA-Contolled-Access-Data.html?#linking-your-nih-and-google-identities]

	IGV Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_IGV.pdf])

	SeqPeek Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_SeqPeek.pdf])

	DIY Workshop [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/DIYWorkshop.html] - Please note that the DIY Workshop includes materials and instructions that are not required to use the web application.

Have feedback or corrections? You can file an issue here [https://github.com/isb-cgc/readthedocs/issues] or email us at feedback@isb-cgc.org.

 _images/correlation_matrix.jpg
0.2

0

_images/eRAlinkedtoAnotherGoogle.png
You tried to log into an NIH account that is linked to another google email address.

Welcome Gabrielle Breteuil!

Verify dbGaP access and start running your own custom pipelines all in one place.

_images/console_top.png
Google BigQuery X ©) Home - ISB-CGC workshe X

C # |8 httpsy/console.cloud.google.com/home/dashboard?project=isb-cgc-04-0030

ﬁ Home Dashboard

_images/correlation_btw_hg19_hg38_v3.jpg
Pearson correlation between
hg38.a.expFPKM and hg19.normalized_count

count

108+

Pearson correlation between

hg38.a.expFPKM and hg19.normalized,

7315 13402 19951

0 5000 10600 15000 20000
> 20K genes sorted by correlation value

_images/iTrust.png
oTrust

NIH SECURE IDENTITY SOLUTIONS

B
A
Insert your PIV card into your smart card reader
_— before attempting to login.
User Name: GBRETEUIL)
—— For more information visit http:/smartcard.nih.qov
Password: @ Change Password

g in

/arning Notice

is is a U.S. Government computer system, which may be accessed and used only for authorized Government business by authorized personnel.
Inauthorized access or use of this computer system may subject violators to criminal, civil, and/or administrative action.

Il information on this computer system may be intercepted, recorded, read, copied, and disclosed by and to authorized personnel for official
rposes, including criminal investigations. Such information includes sensitive data encrypted to comply with confidentiality and privacy
requirements. Access or use of this computer system by any person, whether authorized or unauthorized, constitutes consent to these terms.
ere is no right of privacy in this system.

_images/jan_results.png
corr

1.0-

0.5-

0.0-

CN and Expr correlation in BRCA

0.0

corr_cn_gexp

0.5

1.0

_images/egfr_hg19_vs_hg38_ranked_v2.jpg
Rank HTSeq hg38

EGFR, hg19 vs hg38, Spearman’s

Rank RSEM hg19

0.96

_images/egfr_hg19_vs_hg38_v2.jpg
Log10 HTSeq hg38.

EGFR, hg19 vs hg38, Pearson’s = 0.93

Log10 RSEM hg1o.

_images/kmeans_plot.png
ESR1

® o ° as.factor(Cluster)
° o ® 0

.-.:' ° ° 1

10 15

_images/may_1.png
Row project_short_name N_genes

1

N o g~ W N

TCGA-UCEC
TCGA-SKCM
TCGA-COAD
TCGA-STAD
TCGA-LUSC
TCGA-LUAD
TCGA-HNSC

805
466
261
246
219
204
179

_images/BigQuerySelect.png
jging

Reporting

Project: My First Project

10: siverpen- 125618 (2469539915727) v

e}

Try App Engine

Creste and deploy o el Word app

Getatated v

Use Google APls

Enable APl ceste credentas and rack
your uasge.

Enbie and mansge AP

Create a Cloud Storage bucket

Store yourunstructured data safely nd
with hgh sviabilty using Cloud Storage

Getatated

Free Trial Support

9 Needhelp gettng
Sendus s cuestion

Documentation

B Google Coud Platorm

B Cloud Piatform solutions

B Cloud Platorm toorae

_images/BlueArrowDropdown.png
 Dtene Myfbope x)Qomsetsan x| ——
€ - € |8 htpsy/bigquery.cloud google.com/welcome/silver-pen-125818

Google BigQuery
[o -

Query Hi ‘Google BigQuery is a web service thatlets you do interactive analysis of massive datasets—up o
Hstory billions of rows. Scalable and easy to use, BigQuery lets developers and businesses tap into powerful
sebHistey data s en domand

To gt started ty on o the fllowing apins
My FirsProjoct @ ’
Create now dataset | —
Nodasets ound n s rojct r
Swich o poect -
Plaseceatea catastorslctanew My Fist Prect e
rolectfom i men abore g the = men n the
Refeh Dislay projct
Public Datasets Manage projects.

» bigguery-publicota hacker_news
» bigguery-publicota noaa_gsod
» bigauery-publc-data samples

» bigauery-publicdata usa_names
> gdeltbq hathitustbocks

» gdeltbg intemetarchivebocks

» lockerdata cde

» myedc green

» mycc yelow

_images/AddISB-CGCProject.png
Welcome to BigQuery!

Add Project

ProjectiD = 2

Ea -

_images/BQ-layout2b-20jul2016.png
OPathway

Ensembl2ReactomeQ OmiRBase2Reactome

miRBase GO.annot @GO
GENCODE °]
] o]
Kaviare ° OGO ontology
Tute
. ‘ r?wiRTarBase
Meth annot
Meth probe id@
TCGA SMC. TCGA protein
TCGACN@ [@TCGA mRNA/mIRNA exp
TCGA DNA meth@ .
@TCGA annot
() @TCGA clinical
FastQC. TCGA biospec
G listing ®TCGA cohort
CGHub uuid. .CGHub manifest

© GCsfile

_images/Breadcrumbs.png
6 ISB-CGC AboutUs Documentation Feedback v

Your Dashboard > Saved Gene & miRNA Favorites >

Gene & miRNA Favorite Details

_images/may_brca_jaccard_table.png
Row table cell n
1 BRCABRCA 2206
2 cemERcA 112
3 cemoEM 1o

_images/may_brca_pathway_jaccard.png
o vouaun]

casel
TCGA-AR-ALAX
TCGAAR-AOTR
TCGA-A2-A0SV
TCGA-A2-AOYI

TCGA-A2-A0SV
TCGA-A2-AOYI

TCGA-AN-AOFF
TCGAAC-AIYI

study1
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

pathCount1.

a
a
a
a
a
a

case2
TCGAEW-ALPL
ToGAEZALSS
TCGAAC-A3YI
TCGADB-AIZS
TCGA-A2-AOYI
TCGAEZALLS
TCGADB-AIZS
TCGAE2ALLG

study2
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

_images/may_3.png
Row

o o A~ W N

casel
TCGA-06-5416
TCGA-DU-6392
TCGA-06-5416
TCGA-06-5416
TCGA-19-5956
TCGA-19-5956

study1
TCGA-GBM
TCGA-LGG
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM

geneCount1
30
21
30
30
16
16

case2
TCGA-IB-7651
TCGA-IB-7651
TCGA-19-5956
TCGA-DU-6392
TCGA-DU-6392
TCGA-IB-7651

study2
TCGA-PAAD
TCGA-PAAD
TCGA-GBM
TCGA-LGG
TCGA-LGG
TCGA-PAAD

geneCount2 gene_intersection gene_union

34
34
16
21
21
34

20
13
10
1"
7
8

44
42
36
40
30
42

jaccard_index
0.45454545454545453
0.30952380952380953
0.2777777777777778
0.275
0.23333333333333334
0.19047619047619047

_images/may_5.png
Row

o o A~ W N

pathway
Histone Modifications
Alpha 6 Beta 4 signaling pathway
Histone Modifications
Histone Modifications
Interferon type | signaling pathways

Kit receptor signaling pathway

casel
TCGA-19-5956
TCGA-06-5416
TCGA-06-5416
TCGA-06-5416
TCGA-06-5416
TCGA-19-5956

study1
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM

geneCount1
17
17
15
15
22
15

case2
TCGA-DU-6392
TCGA-DU-6392
TCGA-19-5956
TCGA-DU-6392
TCGA-IB-7651
TCGA-DU-6392

study2
TCGA-LGG
TCGA-LGG
TCGA-GBM
TCGA-LGG
TCGA-PAAD
TCGA-LGG

geneCount2 gene_intersection gene_union

20
15
17
20
20
20

13
1"
1"
12
14
1"

24
21
21
23
28
24

jaccard_index
0.5416666666666666
0.5238095238095238
0.5238095238095238
0.5217391304347826
0.5
0.4583333333333333

_images/20rows-not-in-GCS.png
dbName
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
curent
fegacy.
curent
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
fegacy.
legacy

access
controlled
contralled
contralled
contralled
contralled
contralled
contralled
contralled
contralled
contralled
contralled
contralled
contralled
open

contralled
contralled
contralled
open

contralled

controlled

Pprogram_name ~ experimental_strategy

TARGET
Teoa
TARGET
Teoa
TARGET
TARGET
Teoa
Teoa
TARGET
TARGET
TARGET
Teoa
TARGET
Teoa
Teoa
Teoa
TARGET
Teoa
Teoa
Teoa

wes
wxs.

RNASeq

wes

Bisulfte-Seq

wxs.

RNASeq

RNASeq

RNASeq

RNASeq

wxs.

Bisulfte-Seq
VALIDATION
Methylation array
Bisulfte-Seq

Exonarray

nul

Frotein expression array
Genotyping array
DNASeq

data_category
Raw sequencing data
Raw sequencing data
Raw sequencing data
Raw sequencing data
Raw sequencing data
Raw sequencing data
Simple nucleotide variation
Raw sequencing data
Raw Sequencing Data
Raw sequencing data
Raw Sequencing Data
DNA methylation

Raw sequencing data
Raw microarray data
Raw sequencing data
Raw microarray data
Raw sequencing data
Raw microarray data
Raw microarray data

Simple nucleotide variation

data_type
Aligned reads

Aligned reads

Unaligned reads.

Aligned reads

Aligned reads

Aligned reads

Simple nucleotide variation
Aligned reads

Aligned Reads

Aligned reads

Aligned Reads

Bisulfte sequence alignment
Aligned reads

Raw intensities

Aligned reads

Raw intensities

Aligned reads

Raw intensities

Raw intensities

Simple nucleotide variation

total_size_TB

1634 505.687326441676

728
1048
103
S
270
817
110
61

58

)

a7
268
24850

169
2
1241
1002
15054

2469244065724
1414691875264
1282012624976
3740478981287
2201189231532
1 554509508958
075885971771
0671088122217
0738813552799
071150864255
0.485600013183
0309228030744
0162701685112
0126602504984
0077084302674
0074182400747
0073735751844
007201086013
0069849381637

_images/meth-to-cn-map.png
chr
TCGA CN

barcode Meth annot
TCGA DNA meth

Meth probe id

_images/24hrExtension.png
e ISB-CGC AboutUs Documentation Feedback v

Welcome Gabrielle Breteuil!

& cabriele ~

Verify dbGaP access and start running your own custom pipelines all in one place.

Personal Details

Email
Address

Last

Logged
In

Gabrielle Breteuil
dr.breteuil@gmail.com
Tue Jun 28 2016 10:03:56

GMT-0400 (Eastern
Daylight Time)

Data Access

@ abGaP Access Authorized

Congratulations, GBRETEUIL! You now have
access to ISB-CGC controlled access TCGA
data until

Wed Jun 29 2016 10:06:37 GMT-0400
(Eastern Daylight Time)

Data Use Certification Agreement

Google Cloud Platform

Apply for "cloud credits” and your own Google
Cloud project by submitting a request here.
Go to the Google Cloud Console.

Register a Google Cloud Project

=Menu

_images/new-block-three-p.png
Local
Storage

. Computational
P Biologist Research Scientist
web access Python, R, SQL

Algorithm Developer
ssh, programmatic

access

F

ISB-CGC Web App

ISB-CGC APIs

Google APIs

Cloud
| Storage

BigQuery

Genomics

Compute
Engine VMs

ISB-CGC
Hosted Data

H Open-Access Data

_images/may_brca_pathways_jaccard_2.png
588488 §

@
a2

casel
TCGABE-ANIC
TCGA-AO-AVE
TCGA-A2-AOTT
TCGAAC-A3YI
TCGA-A2-A0SV
TCGA-A2-AOYI
TCGA-A2-A0SV
TCGA-AC-A3Y]

study1
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

pathCount1.

a
a
a
a
B

casez
TCGAES-AIRS
TCGABH-AOBF
TCGAAC-A3YI
TCGALLASOY
TCGABH-AGBY
TCGABH-AOWS
TCGABH-AGBM
TCGA-ES-ALRE

study2
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

BB RB RS

jaccard_index
0.96969696969696972
0.96923076923076923
096875
096875
096875
096875
096875

E
3
2
2
2
2
2
2

0.96875

_images/10rows-not-in-GCS.png
Row dbName access program_name experimental_strategy

1

fegacy.
current
current
current
fegacy.
current
fegacy.
current
current

legacy

open
open
open
open
open
open
open
open
open

open

Teca
Teoa
Teoa
Teoa
Teoa
Teoa
Teoa
Teoa
Teoa
TeeA

Genotyping array
RNASeq

Genotyping Array
Genotyping Array
Methylation array
Methylation Array
Frotein expression array
MIRNA-Seq
MIRNA-Seq

Protein expression array

data_category
‘Copy number variation
Transcriptome Profiling
Copy Number Variation
Copy Number Variation
Raw microarray data
DNA Methylation

Raw microarray data
Transcriptome Profiling
Transcriptome Profiling

Raw microarray data

data_type

Copy number segmentation
Gene Expression Quantfication
Masked Copy Number Segment
Copy Number Segment
Normalized intensities.
Methylation Beta Value

Raw intensities

Isoform Expression Quantifcation
mIRNA Expression Quantication
Intensities

n
45200
33270
2237
2237
12475
12350
1241
10009
10009

835

total_size_TB
0001458353554
0014337833825
38021192084
00012004401
022663428277
140427338794
001511556253
0004202303841
5533047654
67335974E5

_images/may_cosmic_1.png
tegasample
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A

geneCountl

888888

cosmicSample
YuKLAB
YUKAT
esceps
YuLan
WSU-HNE
sysuce-880T

Primary
skin
skin
skin
skin
upper_aerodigestive_tract

large_intestine

Primary_histology
‘malignant_melanoma
‘malignant_melanoma
carcinoma
‘malignant_melanoma
carcinoma

carcinoma

geneCount2
9

1n

s

9

12

5

intersection gene_union

NI

2
a
2
a
Ed
a

Jaccard_index
021875
0.20588235294117646
01875
0.14705882352081177
0.13513513513513514
0.12003225806451613

_images/personaeicon-NIHLoginAssoc.png
6 ISB-CGC AboutUs Documentation Feedback v A . Gabrielle v = Menu

_images/may_2_2.png
Row Hugo_Symbol gene_count

1 Fexw EY
2 NoToHL 15
3 NoToHs 1
4 o1 9
B 9
5 NoToH2 s

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_images/startscreen-login.png
elss»cec AboutUs Documentation ~ Feedback

Your Dashboard

Saved Workbooks (0)

Workbooks store the Analyses you create -- and their related data.

Saved Cohorts (0)

You don't have any saved Cohorts.

Create Cohort

Saved Programs (0)

‘You can upload data from your own research programs.

& Upioad Program Data

Gene & miRNA Favorites (0)

‘You don't have any saved Gene & miRNA Favorites.

Create Gene & mIRNA Favorites

Variable Favorites (0)

You don't have any saved Variable Favorites.

Create Variable Favorites

0 Gabrielle v

= Menu

_images/startscreen-nologin.png
158¢6C | About Us | foccumentation [eesback~ #Sign In

Send Feedback
Submit Github Issve

The ISB Cancer Genomics Cloud (ISB-CGC) is democratizing access to
data and coupling it with unprecedented computational power to allow
researchers to explore and analyze this vast data-space.

[T =) =T

Partners:
F

Google Cloud Platform

CSRA:

About Us:

The Cancer Genomics Cloud i a platform that serves as a large scale repository and provides the compu
canoer genomics research at unprecedented scales.

jonal infrastructure necessary to carry out

Please use 3 Google managed email 3000unt to log into this systems.

Funding:

This project has been funded in whole with Federal funds from the National Canoer Institute, National Institutes of Health, Department of Health and
Human Servioes, under Contract No. HHSN281201400007C.

Warning Notice:

You are acosssing a U.S. Govemment (National Institte of Heaith (NIH), National Canoer Institute (NCI) and Institute for Systems Biology 158) website
appécation which may contain information that must be protected under the U. S. Privacy Act or other sensitive information which is intended for
authorzed Scientific or Research use only. Network activity and Application usage is moniored to maintain system security, avalabilty, and to ensure
appropriate and legitimate usage, there is no right or expectation to privacy on this website / system. Unauthorized attempts to upload information,
change information, or use of this website for other than its intended purpose may resultin discipinary acton, civil, and/or criminal penaltes. Any
individual or system that acoesses this website should have no expectation of privacy regarding any communications of data processed by this website.
Anyone acoessing this website expressly consents to monitoring of their actions and all communication or data transiting or stored on of reated 10 this
website and is advised that if such monitoring reveals possibie evidence of crminal activity. NIH may provide that evidence to law enforoement
officials.

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/file.png

_static/minus.png

_images/COSMIC-sql-00.png
New Query

1w
mutCounts AS (

Nouswn

10
1
12
13+
13
15
16
17
18+
19

SeLecT

Query Editor

‘COUNT(DISTINCT (ID_tumour)) AS CaseCount,
Hutation_AA,
Gene_name

FROM

*1sb-cge. COSHIC. greh37_vao"

GROUP BY

Hutation_AA,
Gene_nane),
mutRatios AS

SELECT

Hutation_AA,
Gene_nane,
CaseCount,
(CaseCount/SUri(CaseCount) OVER (PARTITION BY Gene_name)) AS ratio

FROM

mutCounts)

‘Standard SQL Dialect %

RUN QUERY

Cir + Enter: run query, Tab or Cirl + Space: autocomplet.

SaveQuery SaveView

Query complete (48 0s elapsed, 131 M8 processed)

Results Explanation Job Information

Download as CSV

Row Mutation_AA

1

© o NP o N

Table

p.VBOOE
p.L36Tfs*46
p.K38sfsa7
pTHA
pL8saR
p.S249C
pRI3H
pRI32C
pRI40Q
p.VBITF

JsoN

Download as JSON

Gene_name CaseCount

BRAF
CALR
CALR
CTNNB1
EGFR
FGFR3
IDH1
IDH1
IDH2
JAK2

FormatQuery Show Options.
o
SaveasTable Saveto Google Sheets
ratio

42678 0.9296621430282963
1666 0.41125647988151076
1068 0.26363860775117254
1391 0.20066358915175994
9840 0.3565088221441252
1967 0.5078750322747224
6998 0.7623093681917211
1042 0.11350762527233116
1211 0.5635179153094463
45522 0.9280544739149049

First <Prev Rows1-100f22 Next> Last

_images/COSMIC-sql-01.png
New Query Query Editor x

1+ seLect EX

2 COUNT(DISTINCT(ID_sample)) AS numsamples,
5 COUNT(DISTINCT(ID tumour)) AS numTumours
4+ FRON,

5 isb-cge.COSMIC.grch37_vae"

6 WHERE

7 Gene_name="KRAS"

i+ Enter: run query, Tab or G + Space: autocompiete.
Standard SQL Dialect % .

RUN QUERY SaveQuery SaveView FormatQuery

Show Options | Query complete (3.4s elapsed, 127 MB processed) (/]

Results | Explanation Job Information
DownloadasCSV DownloadasJSON SaveasTable Save to Google Sheets
Row numSamples numTumours

1 40223 39905

Table | JSON

_images/COSMIC-Kaviar-sql-01.png
Results.

Row caseCounts.

N o o e LN

Table

JsoN

40894
1740

183
140
15
13
109

Explanation

nucChange ~chr

C
AT
AT

Job Information

9

@ e ooy

Download as CSV

pos Kaviar AC

5073770
38182641
57484421
33798574
33797861
33798075
33796799
29912856

£

14

10

19
7370
16
310
89501

Download as JSON

Kaviar_AF ~Kaviar_AN

5534
9.0E5
6.43E5
12264
0.0473043
1.029E-4
0.0019935
05755543

155504
155504
155504
155504
155504
155504
155504
155504

Save as Table.

gene_name.
JAK2
MYD8S
GNAS
PRSS3
PRSS3
PRSS3
PRSS3
HAA

Save to Google Sheets
exon_id
ENSE00001282890
ENSE00003619131
ENSE00003457989
ENSE00001625216
ENSE00003414827
ENSE00003414827
ENSE00003613028
ENSE00003618247

_images/COSMIC-Kaviar-sql-02.png
Results Explanation Job Information

Stage timing Rows

Wait Read Compute Wiite Input Output
» Stage 1 — 4746197 4,183,375
» Stage2 - — - 20877103 164,096,704
¥ Stage 3 . 2828312 150,823
> Stage 4 — — 153,507,256 153,507,256
» Stage 5 — 3138379 3138379
» Stage 6 — | 4,183,375 3,276,500
¥ Stage 7 — 3,276,500 3,276,500
¥ Stage 8 ' 150,823 131,992
¥ Stage 9 ' 3,276,500 167
» Stage 10 167 167
¥ Stage 11 131,992 131,992
¥ Stage 12 - 165,371,472 8

> Stage 13 ' 8 8

_images/Fig1-WebappCohorts.png
Saved Workbooks (1)

Workbooks store the Analyses you create — and their related data.

Untitled Workbook

Saved Cohorts (5)

API_STAD_Publication_Cohort
API_test_samples
API_non_smokers
CCLEBRCA

Lifelong Smokers DNA Sequence

Create Cohort

Your Dashboard >

Cohorts

SAVED COHORTS

PUBLIC COHORTS

Aug 29, 2016, 1053 am.

Aug 29, 2016, 1050 a.m.

Aug 26, 2016, 1213 pm.

Jul 13, 2016, 830 am.

Jul 13, 2016, 805 a.m.

Iy | R B

' Cohort Name

[API_STAD_Publication_Cohort
[API_test_samples

[API_non_smokers

[CCLEBRCA

[Lifelong Smokers DNA Sequence

#Samples # Patients
635 205

3 3

1791 865

10 56

1656 805

Jul13, 2016, 819 a.m.

Gene Favorites (0)
YYou don't have any saved Gene Favorites.

Create Gene Favorites

Variable Favorites (1)
Vital Age Prior
Create Variable Favorites
Ownership ‘Shared With Cohort ID
You (0) 765
You (0) 764
You (0) 753
You (0) 554
You (0) 553

Jul 13, 2016, 819 am.

+ Create New Cohort

Last Modified ~

Aug 29,2016, 10:53 am.
Aug 29, 2016, 10:50 a.m.
Aug 26,2016, 12:13 pm.
Jul 13,2016, 830 am.

Jul 13,2016, 8:05 am.

_images/Fig2-APIResponseNamesOnly.png
APIs Explorer “«

Services Selector specifying which fields to include in a partial response.
fields count items/name e e

Al Versions

D Request History

isb_cgc_api.cohorts.

executed moments ago. e o sxesute: 520 me

Request

GET https://api-dot-isb-cgc.appspot.con/_ah/api/isb_cgc_api/v2/cohorts?Fields=count¥2Citems%2Fnane

Response

: "ALL TCGA Data”
“Lifelong Smokers DNA Sequence™
"CCLE BRCA"

"API_non_smokers"

“name”: "API_test_samples”

“name”: "API_STAD_Publication_Cohort"

_images/COSMIC.png
COSMIC

Catalogue Of Somatic Mutations In Cancer

_images/CohortCreation.png
Your Dashboard > Cohorts >

Create Cohort

1SB-CGC DATA

PROJECTS & STUDIES

USER PROJECT

) Mouse Cancer Project (90)

~ USER STUDY

]
a
a

Mouse Gene Expression (90)
miRNA Data (10)
RPPA data (63)

Selected Filters

User Study: Mouse Gene Expression X

Details

Total Number of Samples: 90

Projects & Studies

Project

Study

Total Number of Participants: 0

Save As New Cohort

Clear All

_images/GCPDashboard.png
S L R R R R R D —ISGmmm——————————S &+ = eem
€ - C 8 hupsy/console.cloud.google.com/start

w8 e =
ST —

oswss | [
y
Google Cloud Platform

S
Getting started

Documentation
“Try Compute Engine Use Google APIs

g Cloud ltform documentat

-

Create a Cloud Storage bucket
sl ¥ cememempypoie

_images/GCPMembers.png
‘The following people are identified as members of your Google Cloud Project:
o drbretevilagmail.com
o drpercivall pottagmail.comv

Users listed with a v will have this Google Cloud Project registered under their account as well If not already done. Users without a + will have to register this project themselves.

_images/GDCdata-in-GCS.png
dbName
fegacy.
curent
fegacy.
fegacy.
curent
fegacy.
fegacy.
curent

legacy

access
controlled
contralled
contralled
open
contralled
open
open
open

controlled

‘program_name
Teca

Teoa
TARGET

ccLe
TARGET

nuil

Teoa

Teoa

nul

n
177430
4a402
6763
1273
1450
2874
220319
2475
10

total_size_TB
132.200488904317
451.901815431568
6207475267138
2280517838846
15.565503418130
12976994070637
4725615391355
000128035315
35064706564

nav.xhtml

 Table of Contents

 		
 The ISB Cancer Genomics Cloud

 		
 About the ISB-CGC

 		
 Cloud-Hosted Data Sets

 		
 NCI Cancer Programs

 		
 TCGA Overview

 		
 TARGET Overview

 		
 CCLE Overview

 		
 CGCI Overview

 		
 NCI-GDC Overview

 		
 ISB-CGC Hosted Data Sets

 		
 Data in BigQuery

 		
 Data in Cloud Storage

 		
 Data in Google Genomics

 		
 Reference Data

 		
 ISB-CGC Hosted Reference Data

 		
 Other Reference Data Sources

 		
 Data Releases and Future Plans

 		
 Release Notes

 		
 Future Plans

 		
 ISB-CGC Web Interface

 		
 Overview

 		
 Accessing Controlled Data

 		
 Interactive Access to Controlled Data

 		
 Accessing Controlled Data from a GCE VM

 		
 Menu Bar

 		
 Workbooks

 		
 Creating and Saving a Workbook

 		
 Genes and miRNAs Favorites List

 		
 Variable Favorites

 		
 Creating and Saving a Variable Favorites List

 		
 Saved Cohorts

 		
 Creating and saving a cohort

 		
 Operations on Cohorts

 		
 Program Data Upload

 		
 Files and File Formats

 		
 Creating and Saving a New Program

 		
 Graphing User Data

 		
 Important sections on the Webapp front page

 		
 Step 1: Create a Cohort from your project

 		
 Step 2: Create a Variables Favorite

 		
 Step 3: Graph the favorites in a Workbook

 		
 Integrative Genomics Viewer (IGV)

 		
 Accessing the IGV Browser from the Web Application

 		
 Using IGV Desktop Application to View Aligned Reads in Google Cloud Storage

 		
 Acknowledgements

 		
 Viewing and using cohorts in the Webapp and API

 		
 Listing Cohorts

 		
 Creating Cohorts

 		
 Web-App Release Notes

 		
 Quick Links

 		
 DIY Workshop

 		
 Step #1: Setting up Your Local Environment

 		
 Your Google Identity

 		
 Installing the Google Cloud SDK

 		
 Installing Chrome

 		
 Installing R and RStudio

 		
 Step #2: Setting up Your Google Cloud Platform (GCP) Project

 		
 Creating / Obtaining your GCP Project

 		
 Google Cloud Platform Console

 		
 Enabling Required Google APIs

 		
 Additional Quickstart Tutorials

 		
 ISB Cancer Genomics Cloud (ISB-CGC)

 		
 Other Topics

 		
 DREAM Challenge: Somatic Mutation Challenge – RNA

 		
 Google Genomics

 		
 Programmatic Access

 		
 Computational System Model

 		
 The Cloud Paradigm

 		
 R, Python and SQL Tutorials

 		
 Programmatic Interfaces

 		
 ISB-CGC API

 		
 Using Google Compute Engine

 		
 Introduction to Google Compute Engine

 		
 Viewing and using cohorts in the Webapp and API

 		
 Listing Cohorts

 		
 Creating Cohorts

 		
 Running Workflows

 		
 The Common Workflow Language (CWL)

 		
 The Workflow Description Language (WDL)

 		
 ISB-CGC-pipelines Framework

 		
 Frequently Asked Questions (FAQ)

 		
 ISB-CGC Accounts and Cloud Projects

 		
 Data Access

 		
 Python Users

 		
 R and Bioconductor Users

 		
 Support & Other Useful Links

 		
 Contact Us

 		
 Your Own GCP project

 		
 Other Useful Links

_images/GraphingStart.png
Untitled Workbook

Worksheet1 + %

« Plot Setti x
Source Data Analysis Type nos
Genes + X Axis Variable
Scatter Plot

Varlables + Mouse Gene Expression: Gene ¥
% Mouse Gene Expression: Gene [Plot as logg(n+1)
Expression Fos 4 Enable Sample Selection

Ll Edit Analysis Settings Tlswap Valu

% Mouse Gene Expression: Gene

Expression Gfil Y Axis Variable

% Mouse Gene Expression: Gene
Expression Left Mouse Gene Expression: Gene ¥

@ To Complete this Analysis: -
() Plot as logyo(n+)

% Mouse Gene Expression: Gene

T Sl « You must select an Analysis Type (above)

« You must select Genes or Variables (or, optionally, both) Color By Feature
Cohorts. + * Youmust select s Cohorts Mouse Gene Expression: Gene Ex ¥

X Mouse Genex cohort Resubmit Plot Cohorts.

@) Mouse Genex cohort

Update Plot

_images/ISB-CGCBiqQueryDatasets.png
€ > C |8 htps//bigquery.cloud.google.com/welcome/silver-pen-125818

Google BigQuery

No datasets ound i s project

Piease crate a datasetorseecta new
Brjectom the meny above.

» isbegeccle_201602_alpha
» isbege:genome_reference
» isbege:plator_reference.
» isbegetega_201510_apha
» isbegetega_cohorts

Public Datasets

» bigguery-publicdta hacker_news
» bigguery public datancaa_gsod
> bigauery-publicata samples

» bigauery-public dta usa_names
» gdeltoghathitustbooks

» gdeltgintemetarcivebooks.

» lockerdata cde

» nye-te green

» nye-tcyelow

Welcome to BigQuery!
oo By i 2w et s fou do e i o masie Gzt oo
bilors offows. Scaabe and easy o se. BigQuey lts dvelopes and businass6 13p o ponerl

data anaytcs on demand
o get state, try one o te following options
+ Readour BigQuer Browser Tool utodal
+ Runa query aganst ur sample data b clcking “Compese Query”
+ Create a new dataset and cad some of your own data ito a table sing the = men o theleft

_images/GDCdata-not-in-GCS.png
dbName
legacy.
legacy.
legacy.
legacy.
legacy.
curent
curent
curent
curent

legacy

access
controlled
contralled
open
open
contralled
contralled
open
contralled
open

open

‘program_name
TARGET
ToeA
nul
ToeA
nul
TARGET
ToeA
ToeA
TARGET
TARGET

n
3361
131654
38186
178601
15367
281
112520
89144
2413
0

total_size_TB
617.002463152523
45.570010426122
167407429200
2837854540196
249645881868
1503972378271
1426430287500
0083284065713
BT1049747E4
34TH45TES

_images/GraphingGraphed.png
Expression Fos

% Mouse Gene Expression: Gene
Expression Gfil

% Mouse Gene Expression: Gene
Expression Left

% Mouse Gene Expression: Gene
Expression Sox3

Cohorts.

% Mouse Genex cohort

Mouse Gene Expression: Gene Expression Sox3

600;

550

500,

450}

400}

350

300,

250}

200,

150)

100/

50|

00

50

200 250 300 350

Mouse Gene Expression: Gene Expression Gfil

Y Axis Variable

Mouse Gene Expression: Gene ¥

() Plot as logyo(n+)

Color By Feature

Cohorts.

@) Mouse Genex cohort

Update Plot

_images/Mouse_bucket_and_dataset.png
Review

les

Please select a Google Cloud Bucket to upload your files to.

isb-cgc-06-0007 - gene_expression
Please select a BigQuery dataset to upload your data to.

isb-cgc-06-0007 - Gene_Expression

Please refer to the system data dictionary @ for proper naming and data type conventions.

File GenExpressionMatrix_noNull.tsv
Platform

+ File structure is defined in the data dictionary.

_images/NIHAssociationPage.png
e ISB-CGC AboutUs Documentation Feedback v

Welcome Gabrielle Breteuil!

. Gabrielle v = Menu

Verify dbGaP access and start running your own custom pipelines all in one place.

Personal Details

Name
Email
Address
Last

Logged
In

Gabrielle Breteuil
dr.breteuil@gmail.com
Mon Jun 27 2016 15:00:35

GMT-0400 (Eastern
Daylight Time)

A

Data Access

Apply for dbGaP Authorized Access to
access underlying Level 1 genomics data

Associate with eéRA Commons Account
€arn 1More

Google Cloud Platform

Apply for "cloud credits" and your own Google
Cloud project by submitting a request here.
Go to the Google Cloud Console.

Register a Google Cloud Project

_images/IfYourScreenLooksLikeThis.png
Gabrielle v = Menu

Cancer Genomics Cloud

The ISB Cancer Genomics Cloud (ISB-CGC) is democratizing
access to TCGA data and coupling it with unprecedented
computational power to allow researchers to explore and analyze
this vast data-space.

Documentation) GitHub Feedback

_images/LogInandUnlink.png
9 ISB-CGC AboutUs Documentation — Feedback v . Gabrielle v =Menu

Welcome Gabrielle Breteuil!
Verify dbGaP access and start running your own custom pipelines all in one place.

Personal Details Data Access Google Cloud Platform

Name Gabrielle Breteuil Apply for "cloud credits” and your own Google

. B . Cloud project by submitting a request here.
Emall g preteui@gmail.com Jdenity. GBRETEUIL
Address Learn More Go to the Google Cloud Console.
i 16 10:03:
Logl.::(: Gl;:'l:{::g: (ZEZs?en? 0356 Register a Google Cloud Project

In Daylight Time)

_images/Not_Dim_Dimmed.jpg
Create Cohort

Name:

Showing Dim Buttoy Greate Cohort

Selected Filters: Name:
vital_status: Alve x | | Showing Dim Bution_Example
gender: MALE % Selected Filters:
age_at_initial_patho] vital status: Alive % vital_status: Dead X gender: FEMALE %
gender: MALEX age_at_initial_pathologic_diagnosis: 60 to 69 X

e age_at_initial_pathologic_diagnosis: 50 o 59 %

‘“

Show Button Dimmed Once Clicked

_images/RegisterAGCPForm.png
Register A Google Cloud Project

To register a Google Cloud Project, please follow these Instructions:

In order for the ISB-CGC to verify that all users of your Google Cloud Project have the same access rights to protected data as you do, we require that you add an ISB-CGC Service
Account to your Google Cloud Project To do so, please complete the following steps:

© Please enter your Google Cloud Project ID:

‘ fsoogle Cloud Project ID

© Go to your Google Cloud Project.
© Select the hamburger menu i the top left corner.

loud Platform

Dashboard

o Select IAM & Admin.

) Google Cloud Platform

Filter proc

A Home

T APIManager
= Biling

@ Cloud Launcher

+ Support

2 IAM&Admin ¥

o Click + Add Member.
© Pazhe (08 7EARASSE TH s L ras AN A an T Cha T AR A LIS Ak e T i ey e g e b e s By

_images/RegisterAServiceAccountFirstScreen.png
£ Register A Service Account

To register service account for isb-cgc-test, please follow these instructions:
Please enter the Service Account ID you'd like to register to this Google Cloud Project. Service Accounts may be found in your Google Cloud Platform console under IAM &
o Admin.

ex. 000000000000-alphanumericstringofcharacters@developergserviceaccount.com

Are you going to use this service account to access controlled access?
No

© Yes

Wi

Click this tn allow us to verify who is allowed to use this service account.

_images/Register_Step_3.png
eISMGC AboutUs Documentation Feedback v & Percivall ¥ Menu

Registered Google Cloud Projects

Project Name Project ID Registered Service Accounts # Storage Buckets #BigQuery Datasets

~ [isbcge06-0007 isb-cgc-06-0007 » 2 2

_images/Register_Step_4.png
e ISBCGC AboutUs Documentation Feedback ¥ . Percivall v = Menu

€ isb-cgc-06-0007

Service Accounts
Service Account Authorized Dataset Date Activated
366178009820-computeadeveloper gserviceaccount.com Al Open Datasets Oct 17,2016, 11:00 a.m. v ce
Register Service Account
Cloud Storage Buckets BigQuery Datasets
| gene_expression x | Gene_Expression x
| microma x | microRNA x

Register Cloud Storage Bucket Register BigQuery Dataset

_images/Register_Step_1.png
e ISBCGC AboutUs Documentation Feedback ¥ . Percivall v = Menu

Your Dashboard

Saved Workbooks (0)

Workbooks store the Analyses you create — and their related data.

+ Create A New Workbook

Saved Cohorts (0) Gene Favorites (0)
YYou don't have any saved Cohorts. YYou don't have any saved Gene Favorites.

Create Cohort Create Gene Favorites

_images/Register_Step_2.png
elsacsc AboutUs Documentation Feedback ¥

Personal Details.

Name
Email
Address

Last
Logged In

Percivall Pott

drpercivall pottagmail. com

Mon Oct 17 2016 15:54:00
GMT-0400 (Easter Daylight
Time)

‘Welcome Percivall Pott!

Data Access.

Apply for dbGaP Authorized Access to access
underlying Level 1 genomics data.

Associate with éRA Commons Account
Learn More

& percvall ~

Google Cloud Platform

Apply for "cloud credits” and your own Google
Cloud project by submitting a request here.

Go to the Google Cloud Console.

View Registered Google Cloud Projects

=Menu

_images/SignIntoGCP.png
0 Google Cloud Computin: % YN

«

€ [@ hups://cloud.google.com

O Google Cloud Platform

& [FRGeage] Products - Soluions Launcher Pricing Customers Documentation Support Partners

Build What's Next
Better software. Faster.

Use Google's core infrastructure, data analytics and machine learning.
‘Secure and fully featured for all enterprises.

Committed to open source and industry leading price-performance.

N e °

Next Live warch2324] online

Contact sales

Watch the keynote. Be 3 part of the largest gathering of the Google Cloud Platform LEARN MORE
communt. Join us oline at NEXT Live on March 23-2
How Google Cloud Platform works
Google Cloud Platform is a set of modular cloud-based services that allow you to create anything
from simple websites to complex applications.
All Cloud Platform products Compute Starage Ria Data orvices

_images/SignOut.png
A | ® Sign Out

_images/RegisteredGCPs.png
e ISB-CGC AboutUs Documentation Feedback~ . Gabrielle ¥ = Menu

Welcome Gabrielle Breteuil!
Verify dbGaP access and start running your own custom pipelines all in one place.

Personal Details Data Access

Google Cloud Platform

Name Gabrielle Breteuil Log in with your NIH identity: GBRETEUIL 3 .

Unlink drbreteuil@gmail.com from the NIH Apply for "cloud credits” and your own Google
Email breteuil@gmail.com identity: GBRETEUIL Cloud project by submitting a request here.

Address) Leam More
— Go to the Google Cloud Console.
Last Mon Aug 08 2016 11:15:17
- -
In ‘GMT-0400 (Eastern Register a Google Cloud Project|

Standard Time)

_images/ServiceAcctRegTable.png
ST g 2" o O Ve WO 5 aTOWEC D HRE TS SeIvIES areoint

User Emall Registered Has NIH Identity
drbreteullagmail.com v v
drpercivall pottagmail.com v v

We have verified that all of the users in your Google Cloud Project have permission to access the proposed datasets.

Authorized Datasets

_images/Variables_selected_genes.png
Your Dashboard > Saved Variable Favorites >

Create Variable Favorite Cancel

Name of Favorite (Required)

My new favorite variable

COMMON ~ FAVORITES(0) CLINICAL ~ MIRNA Selected Variables Clear All
~ MOUSE CANCER PROJECT | MOUSE GENE EXPRESSION Select your favorite variables from the left panel
() Gene Expression Tmem168 Mouse Gene Expression: Gene Expression Fos X

) Gene Expression Cd3g
[0 Gene Expression Itih3
) Gene Expression Ryr! Mouse Gene Expression: Gene Expression Lefl

Mouse Gene Expression: Gene Expression Gfil x

) Gene Expression Ints7

Mouse Gene Expression: Gene Expression Sox3 x
Gene Expression Traf4

» MOUSE CANCER PROJECT | MIRNA DATA|

» MOUSE CANCER PROJECT | RPPA DATA|

_images/all_tcga_jaccard_by_pathways_log_counts.png
10
s
5
4
2
o

TCGACOAD

TCGA VI
TCGABRCA
TC3ALG6

T6GA0V;

1C3ATUAD
TeaALCEC
TCaATNSC
1C3ASTAD
TCGASKOM
TCGAPARD
TCaAGEN
| TCGAPRAD
163aBLCA
TCaALUSC
TCRALINC
TCaASARC
TCGAREAD

TeaaDLEC

TC3ATESCA
TeaALCS
TCaATHCA
TCGAKICH

| TCGAMESO
TC3ATESC
TCGAKIRC
TCGAKIRD
TCGALAML
Te3aAce
TCaAPCRG
TeaATGCT
TeaACHOL
TeaATHVM

ToaaTHYM

_images/TopAnnotated.png
Your Dashboard

Saved Workbooks (0)

Workbooks store the Analyses you create — and their related data.

‘ Use this link to create a new Workblook

Saved Cohorts (0) Gene Favorites (0)
YYou don't have any saved Cohorts. YYou don't have any saved Gene Favorites.

Create Gene Favorites

Variable Favorites (0)
Use this link to start a new Cohort You don't have any saved Variable Favorites.
Create Variable Favorites | e
_ Use tl k to create new Variables
Favorites
Saved Projects (1) Public Data (2)
You can upload from your own research projects Browse publicly-available studies and data
Mouse Cancer Project

Mouse Data to compare to TCGA

& Upload Project Data

_images/april_table2.png
Row.

tegaSample
TCGA-CA-6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A

geneCountt
1560
1560
1560
1560
1560
1560
1560

cosmicSample

sysucc-311T
YUKLAB
YUKAT
YUWAND
YURAY
YULAN
©SCCP7

Primary_site
large_intestine
skin
skin
skin
skin
skin

skin

Primary_histology ~geneCount2

carcinoma
malignant_melanoma
malignant_melanoma
malignant_melanoma
malignant_melanoma
malignant_melanoma

carcinoma.

2042
2175
3708
1069
1335
1342

647

intersection gene_u

07
240
333
140
149
149
104

n
4195
3495
4933
2489
2746
2753
2103

jaccard_index
0.0731823599523242
0.06866952789699571
0.06750456111899453
0.0562474889513861
0.054260742898761836
0.054122775154377044
0.04945316214931051

_images/brca_vs_stad_dendrogram.png
BRCA in blue and STAD in red

el

LLL L LLLLLLL L LLLLLLLLLLLLLLLLLLLLC

AN
~— —
o —

-98YV-00-VOO L

-HOYV-NH-YOOL

OOOOOOOOOOIOOOOOOOO
%)
($)
3
4
o
<
Q
(8]
[

>o0005
NOLO>-
OIS
33333
==l
TTits
<<@<0
80080
iy

©ch
QI
<

222

TT
<
Y]
O
I

QOO
0 0

LOOOOI
3333

2
>
<
<<
2DD

<

33
o7
23
35
O

9]
<
-
:II:
<
[0
O
2

71910]
3
2D,
Tz

<<
O
O
=

3
[}
u
<
[0
O
P

o0 LT
3333
~OrOD
<
O
O
=

3

QUIT
<
19
O
=

§omévowu

e
<
0
O
2

3
2
a
<
1o}
O
3

3%
<
(a]
O
<
O
O
¢

EEO“E
N
o
<
1Y)
O
F

2
<
|
Q
<
0]
O
2

Zm>
>0
N
<
z
I
<<
O
O
=

N1
.
s
<
=)
ul
<
(V]
O
2

[]=)
<

32
N

<n!
i
35
(S

SETSES
<<g
<34
o-iE
375
LR
PER

T 1T
N

000z
<t
o]
<
C
<
<
(O]
O
=

a5t
iR
352
983
Sy

OOOOOOOOOOOOOOOOOOOIOOOOOOOOOOOOOOOOOO
N
(¢}
s}
<
Y
Q
<<
V]
O
=

o33

OOOOIOOO
]
[rstere i qaN
1442
Ol
<=50
St
Q0B0
OG0
FECHE

<
1)
=
<
A
o
&

OEE
3
=
Q
<
19}
O
=

3
<
XS
o
&
0
O
2

29550555565055
AONO>-N>-O>-—N0. L O

To83arEnesEE
3399944932933
L 014 AN a0 T
2aolioZogesLing
T L L <
53800038085580
OFRFRFROFP PPe

3532
223
Shids
L
SO0
S00
o

=
$
<
O\,
<
<
19}
O
o

o
250
333
S
<L LT
228
PeR

OOOOOOOIOOOOOOO
N
3
<
N
<
<
QO
($]
[

7]
2

= -/V-VOOL

_images/april_plot2.png
IsSample065416
°0

jaccard_index

0.1-
X Y4
.
3
00- ’
0 500 1000 1500

gene_intersection

2000

1

_images/april_table1.png
Row.

casel
TCGA-06-5416
TCGA-DU-6392
TCGA-06-5416
TCGA-06-5416
TCGA-19-5956
TCGA-19-5956

studyt
TCGA-GBM
TCGALGG
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM

geneCountt
5221
4781
5221
5221
3266
3266

case2
TCGA-B-7651
TCGA-B-7651
TCGA-DU-6392
TCGA-19-5956
TCGA-B-7651
TCGA-DU-6392

study2
TCGA-PAAD
TCGA-PAAD
TCGALGG
TCGA-GBM
TCGA-PAAD
TCGALGG

geneCount2 gene,

5877
5877
4781
3266
5877
4781

tersection gene_union

2277
2141
1840
1390
1478
1259

8821
8517
8162
7097
7665
6788

jaccard_index

0.2581339984128784
0.25137959375366914
0.22543494241607448
0.19585740453712835
0.19282452707110243
0.18547436652916913

_images/brca_vs_stad_heatmap_3.png
A4SA-01A

Teccatats
=555

AS22979 g
TORAS LSS

CGA-A2-A4RW-01A

-A4H3-01A
44U-01A
D-A487-01A
D-A4MH-01A
-A4BF-01A

-BR-A453-01A
-BR-A4CS-01A

'CGA-HN-A20B-01A

C
CGA-HU-
C

GOA
CGA-
CGA-
CGA-|

~ StudyA

A e

I

1 TCGA-D7-A4Z0-01A

Hdddd-
Q9900Qq

A-DB-A4Z1-01A

GA-GM-A4E0-01A

A-CD-A4AMI-01A
A-CD-A489-01A
A-BR-A453-01A

GA-BR-A41U-01A

A-D7-A4YU-01A
3A-BR-A4CS-01A
A-HU-A4GY-01A
A-HU-A4GJ-O1A

A-CD-A487-01A
A-CD-A486-01A
A-D7-A4YX-01A
A-HU-A4GN-01A
A-F1-A448-01A
A-HU-A4H4-01A
A-HU-A4HD-01A
A-HU-A4G3-01A
A-HU-A4HB-01A
A-HU-A4HB-01A
A-D7-A4YT-01A
A-HU-A4H3-01A

SIS S>3

oo

5oF
bbb bR
g
g
>

>
)

P e e e e e e e e e e B e e] P e e]
QQQQQARRNNNNNNNAAAAARARNARRNNNNNAAAAAAANNANNNNNANAAAAAARAARNNNNNNAAAAAAAARARARNNNNNAAAAAANNNNNNNAAAA

GA-EQ-ASFL-01A

A-LL-ASYO-01A
A-OL-A5S0-01A

GA-BR-A44T-01A

A-AT-A4SF-01A

GA-A2-A4RY-01A

A-AC-ASEI-01A

GA-A2-A4S2-01A

A-AC-A5XU-01A

GA-EQ-A54X-01A
GA-AR-A5QM-01A
GA-AR-A5QP-01A
GA-AR-A5QN-01A
GA-A2-A4S3-01A

A-AQ-AS4N-O1A
A-AT-A4SC-01A

_images/brca_vs_stad_heatmap.png
StudyA
3 BRCA
. _ STAD

R e PR

e g S25

TZORO0C0RE AT L0
3

CGA- L%_ME‘l-
'CGA-MS-A51U-

'CGA-OL-ASDA-01A
CGABH-ASIZ-OTA

(al/)lalalal
;29357
ey
gasss
00000

‘CGA-OL-A5D!

TCGA-BH-A5J0-01A
A-A7-A56D-01A
A-AQ-A540-01A
GA-E9-ASFK-01A
GA-A2-A4S1-01A
A-A7-A4SB-O1A
GA-A2-A4RX-01A
A-AT-A4SE-01A
A-AT-A4SA-01A
A-LL-ASYN-O1A
GA-ES-A54Y-01A
A-OL-ASD6-01A
A-OL-ASD8-01A
A-OL-ASD7-01A
‘GA-PE-ASDD-01A
GA-PE-ASDC-01A
GA-PE-ASDE-01A
A-LQ-A4E4-01A

5A-BR-A44T-01A
A-OL-A5S0-01A
A-LL-ASYO-01A

A

]
il I IR StudyA
ARRNRNNNRRRTNNNANNNND DO D NINNIEM WH 1

il

A-BR-A4PE-01A
A-BR-A4CR-01A
A-D7-A4YU-01A
A-BR-A4CS-01A
A-HU-A4GY-01A

A-HU-A4GF-01A
A-HU-A4GD-01A

P e e e e] P e e e e e e e e e]
QQQQQRRNNNNNNNAAAAARNRNRNNNNAAAAAAAARNNNNNNNNAAAAANARRARNNNNNNAAAAAANNNARNNNAANAAAAAANNNNNNNAAY

\-HU-A4GN-01A
TCGA-D7-A4YX-01A
TCGA-CD-A486-01A
TCGA-GM-A4E0-01A
TCGA-D8-A4Z1-01A

_images/brca_vs_stad_heatmap_2.png
e R

Serooonsco

<.
2
¥
5

3

| TCGA-FP-A4BF-01A

TCGA-GM-A4E0-01A
TCGA-D8-A4Z1-01A
TCGA-BR-A4IU-01A
TCGA-BR-A453-01A
TCGA-CD-A4MI-01A
TCGA-CD-A489-01A
TCGA-D7-A4YU-01A
R-A4CS-01A
-A4GY-01A
TCGA-HU-A4GJ-O1A

3A-BR-A4QI-01A
A-D7-A4YX-01A

A-AQ-A540-01A
A-BH-A5J0-01A
A-A7-A56D-01A
A-A7T-A4SB-01A

A-A2-AGRX-01A

AAT-A4SEQTA

3A-AR-A5QN-01A
3A-GM-A5PX-01A
A-HN-A20B-01A
GA-GM-A5PV-01A
A-OL-ASRY-01A

A-OL-ASRV-01A
A-HU-A4G2-01A
TCGA-EQ-A4SO-01A
GA-BR-A4CR-01A

TCGA-BR-A4J5-01A
-BR-A4J8-01A
TCGA-BR-A4J9-01A
TCGA-BR-A4IV-01A

